New MRI Tool Introduced for Cancer Diagnosis and Therapy
By MedImaging International staff writers Posted on 05 Sep 2018 |

Image: Superparamagnetic ferritin compound targeting a tumor cell (Photo courtesy of NUST-MISiS).
A superparamagnetic ferritin compound improves the accuracy of diagnosing malignant cells and provides additional opportunities for cancer treatment, claims a new study.
Researchers at Helmholtz Zentrum München (Munich, Germany), the Russian National University of Science and Technology (NUST-MISiS; Moscow, Russia), and other institutions have synthesized a novel magnetoferritin, consisting of an endogenous human protein (ferritin) and a magnetic nucleus, which has been optimized for cellular uptake and ensuing trafficking to lysosomes. It can thus serve as a hypoallergenic contrast agent for optoacoustic imaging, and allow for selective photoablation of cells overexpressing the ferritin receptors.
According to the researchers, the genetically controlled uptake of the biomagnetic nanoparticles also strongly enhances third‐harmonic generation, due to the change of the refractive index caused by the magnetite–protein interface of ferritins entrapped in lysosomes. Selective uptake of magnetoferritin also enables detection of receptor‐expressing cells by magnetic resonance imaging (MRI), as well as efficient magnetic cell sorting and manipulation. A substantial increase in the blocking temperature of lysosomally entrapped magnetoferritin was also observed, which could allow for specific ablation of genetically defined cell populations by magnetic hyperthermia. The study was published in the May 2018 issue of Advanced Functional Materials.
“Spreading with the blood flow, magnetoferritin will be captured by the targeted tumor cells; as has been shown in a large number of studies, these cells actively capture transferrin, the protein responsible for the transport of iron in the blood,” said study co-author Professor Ulf Wiedwald, PhD, of the NUST-MISiS biomedical nanomaterials laboratory. “The receptors are capable of capturing the magnetoferritin as well. Once they get into the lysosomes of targeted cells, the magnetoferritin will further enhance the contrast signal.”
Transferrins are iron-binding blood plasma glycoproteins that control the level of free iron in biological fluids. Although the iron bound to transferrin is less than 0.1% of total body iron, it forms the most vital iron pool with the highest rate of turnover (25 mg/d). Transferrin also plays a key role in areas where erythropoiesis and active cell division occur, delivering iron absorption centers in the duodenum and white blood cell macrophages to all tissues.
Related Links:
Helmholtz Zentrum München
Russian National University of Science and Technology
Researchers at Helmholtz Zentrum München (Munich, Germany), the Russian National University of Science and Technology (NUST-MISiS; Moscow, Russia), and other institutions have synthesized a novel magnetoferritin, consisting of an endogenous human protein (ferritin) and a magnetic nucleus, which has been optimized for cellular uptake and ensuing trafficking to lysosomes. It can thus serve as a hypoallergenic contrast agent for optoacoustic imaging, and allow for selective photoablation of cells overexpressing the ferritin receptors.
According to the researchers, the genetically controlled uptake of the biomagnetic nanoparticles also strongly enhances third‐harmonic generation, due to the change of the refractive index caused by the magnetite–protein interface of ferritins entrapped in lysosomes. Selective uptake of magnetoferritin also enables detection of receptor‐expressing cells by magnetic resonance imaging (MRI), as well as efficient magnetic cell sorting and manipulation. A substantial increase in the blocking temperature of lysosomally entrapped magnetoferritin was also observed, which could allow for specific ablation of genetically defined cell populations by magnetic hyperthermia. The study was published in the May 2018 issue of Advanced Functional Materials.
“Spreading with the blood flow, magnetoferritin will be captured by the targeted tumor cells; as has been shown in a large number of studies, these cells actively capture transferrin, the protein responsible for the transport of iron in the blood,” said study co-author Professor Ulf Wiedwald, PhD, of the NUST-MISiS biomedical nanomaterials laboratory. “The receptors are capable of capturing the magnetoferritin as well. Once they get into the lysosomes of targeted cells, the magnetoferritin will further enhance the contrast signal.”
Transferrins are iron-binding blood plasma glycoproteins that control the level of free iron in biological fluids. Although the iron bound to transferrin is less than 0.1% of total body iron, it forms the most vital iron pool with the highest rate of turnover (25 mg/d). Transferrin also plays a key role in areas where erythropoiesis and active cell division occur, delivering iron absorption centers in the duodenum and white blood cell macrophages to all tissues.
Related Links:
Helmholtz Zentrum München
Russian National University of Science and Technology
Latest MRI News
- AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
- Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
- AI-Powered MRI Technology Improves Parkinson’s Diagnoses
- Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
- First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
- New Model Improves Comparison of MRIs Taken at Different Institutions
- Groundbreaking New Scanner Sees 'Previously Undetectable' Cancer Spread
- First-Of-Its-Kind Tool Analyzes MRI Scans to Measure Brain Aging
- AI-Enhanced MRI Images Make Cancerous Breast Tissue Glow
- AI Model Automatically Segments MRI Images
- New Research Supports Routine Brain MRI Screening in Asymptomatic Late-Stage Breast Cancer Patients
- Revolutionary Portable Device Performs Rapid MRI-Based Stroke Imaging at Patient's Bedside
- AI Predicts After-Effects of Brain Tumor Surgery from MRI Scans
- MRI-First Strategy for Prostate Cancer Detection Proven Safe
- First-Of-Its-Kind 10' x 48' Mobile MRI Scanner Transforms User and Patient Experience
- New Model Makes MRI More Accurate and Reliable
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more