New AI Algorithm Makes Liver Cancer Surgery Safer
By MedImaging International staff writers Posted on 07 Jun 2018 |

Image: New algorithms analyze patients’ imaging data and calculate surgical risks, making liver cancer surgery safer (Photo courtesy of the Fraunhofer Institute for Medical Image Computing MEVIS).
Researchers at the Fraunhofer Institute for Medical Image Computing MEVIS (Bremen, Germany) have developed algorithms that analyze patients’ imaging data and calculate surgical risks, making liver cancer surgery safer and easier to plan. Researchers at Fraunhofer have been working on image-processing algorithms for use in medicine since 1998. The method is now widely known among physicians as MEVIS analysis and has become established in practice.
Surgery continues to offer the best chance of recovery among patients with liver cancer or those with liver metastases caused by other cancers. However, the complex, entangled human vascular anatomy makes it difficult to reconstruct mentally based on CT or MRI images alone. The new software analyzes a patient’s radiological images, and generates a detailed three-dimensional model of the liver and its vascular systems. It calculates the supply and drainage areas of the blood vessels and helps to determine the risks of possible tumors resection strategies. The information can be used by surgeons to prepare their surgery accurately by planning the optimal resection virtually. The analysis of vascular anatomy in the vicinity of the tumor also helps locate critical sections of the planned procedure. The surgeon receives a risk map of the resection path and knows where there is little room for deviations from the optimal cutting plane, such as where the planned resection corridor is particularly narrow.
The researchers have also developed an iPad app that combines the planning data with augmented reality. When the doctor turns on the iPad camera and directs it at the patient’s liver, the three-dimensional image of the patient’s liver, previously generated using the algorithms, is superimposed onto the image of the camera and shows the position of the blood vessels and tumors beneath the liver surface.
According to studies, liver surgery is more efficient and safer with the MEVIS analysis. Additionally blood loss can also be reduced. In some cases, the analysis algorithms allow surgeons to safely perform even delicate operations, which would have been considered too risky without the software. The software also generates suggestions for performing resections. "However, these are only proposals. Ultimately, the decision has to be made by the surgeon," said Dr. Andrea Schenk, Head of Liver Research at the Fraunhofer MEVIS.
Related Links:
Fraunhofer Institute for Medical Image Computing MEVIS
Surgery continues to offer the best chance of recovery among patients with liver cancer or those with liver metastases caused by other cancers. However, the complex, entangled human vascular anatomy makes it difficult to reconstruct mentally based on CT or MRI images alone. The new software analyzes a patient’s radiological images, and generates a detailed three-dimensional model of the liver and its vascular systems. It calculates the supply and drainage areas of the blood vessels and helps to determine the risks of possible tumors resection strategies. The information can be used by surgeons to prepare their surgery accurately by planning the optimal resection virtually. The analysis of vascular anatomy in the vicinity of the tumor also helps locate critical sections of the planned procedure. The surgeon receives a risk map of the resection path and knows where there is little room for deviations from the optimal cutting plane, such as where the planned resection corridor is particularly narrow.
The researchers have also developed an iPad app that combines the planning data with augmented reality. When the doctor turns on the iPad camera and directs it at the patient’s liver, the three-dimensional image of the patient’s liver, previously generated using the algorithms, is superimposed onto the image of the camera and shows the position of the blood vessels and tumors beneath the liver surface.
According to studies, liver surgery is more efficient and safer with the MEVIS analysis. Additionally blood loss can also be reduced. In some cases, the analysis algorithms allow surgeons to safely perform even delicate operations, which would have been considered too risky without the software. The software also generates suggestions for performing resections. "However, these are only proposals. Ultimately, the decision has to be made by the surgeon," said Dr. Andrea Schenk, Head of Liver Research at the Fraunhofer MEVIS.
Related Links:
Fraunhofer Institute for Medical Image Computing MEVIS
Latest Industry News News
- GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
- Patient-Specific 3D-Printed Phantoms Transform CT Imaging
- Siemens and Sectra Collaborate on Enhancing Radiology Workflows
- Bracco Diagnostics and ColoWatch Partner to Expand Availability CRC Screening Tests Using Virtual Colonoscopy
- Mindray Partners with TeleRay to Streamline Ultrasound Delivery
- Philips and Medtronic Partner on Stroke Care
- Siemens and Medtronic Enter into Global Partnership for Advancing Spine Care Imaging Technologies
- RSNA 2024 Technical Exhibits to Showcase Latest Advances in Radiology
- Bracco Collaborates with Arrayus on Microbubble-Assisted Focused Ultrasound Therapy for Pancreatic Cancer
- Innovative Collaboration to Enhance Ischemic Stroke Detection and Elevate Standards in Diagnostic Imaging
- RSNA 2024 Registration Opens
- Microsoft collaborates with Leading Academic Medical Systems to Advance AI in Medical Imaging
- GE HealthCare Acquires Intelligent Ultrasound Group’s Clinical Artificial Intelligence Business
- Bayer and Rad AI Collaborate on Expanding Use of Cutting Edge AI Radiology Operational Solutions
- Polish Med-Tech Company BrainScan to Expand Extensively into Foreign Markets
- Hologic Acquires UK-Based Breast Surgical Guidance Company Endomagnetics Ltd.
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read moreUltrasound
view channel
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read more
Novel Imaging Method Enables Early Diagnosis and Treatment Monitoring of Type 2 Diabetes
Type 2 diabetes is recognized as an autoimmune inflammatory disease, where chronic inflammation leads to alterations in pancreatic islet microvasculature, a key factor in β-cell dysfunction.... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more