Bone Scan Software Predicts Prostate Cancer Survival
By MedImaging International staff writers Posted on 29 May 2018 |

Image: A micrograph showing prostatic acinar adenocarcinoma – the most common form of prostate cancer (Photo courtesy of Wikipedia).
Researchers from the Duke Cancer Institute (Durham, NC, USA) have developed a software tool that automatically calculates the extent to which bones have been infiltrated by prostate cancer. The software, called the automated Bone Scan Index, or aBSI, also provides key prognostic information about the patient’s survival and development of symptoms over time. The researchers tested the software in a large, global multicenter study and have published their findings from the phase 3 study in JAMA Oncology.
Presently, bone metastases are measured by CT or MRI scans, accompanied by a nuclear medicine test involving manual assessment. Since the process of manual bone scan assessments, which is done using a formula based on bone mass and the number of cancer lesions, is subjective and time-consuming, it is not used in clinics on a regular basis. The aBSI software program can scan radiographic studies and quantify the degree of bone metastases within seconds.
Using the aBSI software, the Duke researchers evaluated 721 men with advanced, recurrent prostate cancer and followed them for the duration of their care. The researchers found the aBSI technology to be significantly better than the manual calculation method for predicting the survival time for the men, irrespective of how widespread their bone metastases was. Additionally, the technology also provided prognostic information about patient outcomes, and improved the ability to predict the time to symptom progression and onset of pain.
"This study describes major improvements over older techniques doctors used to measure bone metastases to predict survival and help guide treatments for patients with advanced prostate cancer," said lead author Andrew Armstrong, M.D, associate professor of medicine and surgery and associate director of the Duke Cancer Institute's Prostate and Urologic Cancer Center. "It's important to know how widespread metastatic disease is—both for patients to understand the likely course of their disease, and for doctors to determine the best potential treatments."
Related Links:
Duke Cancer Institute
Presently, bone metastases are measured by CT or MRI scans, accompanied by a nuclear medicine test involving manual assessment. Since the process of manual bone scan assessments, which is done using a formula based on bone mass and the number of cancer lesions, is subjective and time-consuming, it is not used in clinics on a regular basis. The aBSI software program can scan radiographic studies and quantify the degree of bone metastases within seconds.
Using the aBSI software, the Duke researchers evaluated 721 men with advanced, recurrent prostate cancer and followed them for the duration of their care. The researchers found the aBSI technology to be significantly better than the manual calculation method for predicting the survival time for the men, irrespective of how widespread their bone metastases was. Additionally, the technology also provided prognostic information about patient outcomes, and improved the ability to predict the time to symptom progression and onset of pain.
"This study describes major improvements over older techniques doctors used to measure bone metastases to predict survival and help guide treatments for patients with advanced prostate cancer," said lead author Andrew Armstrong, M.D, associate professor of medicine and surgery and associate director of the Duke Cancer Institute's Prostate and Urologic Cancer Center. "It's important to know how widespread metastatic disease is—both for patients to understand the likely course of their disease, and for doctors to determine the best potential treatments."
Related Links:
Duke Cancer Institute
Latest Industry News News
- GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
- Patient-Specific 3D-Printed Phantoms Transform CT Imaging
- Siemens and Sectra Collaborate on Enhancing Radiology Workflows
- Bracco Diagnostics and ColoWatch Partner to Expand Availability CRC Screening Tests Using Virtual Colonoscopy
- Mindray Partners with TeleRay to Streamline Ultrasound Delivery
- Philips and Medtronic Partner on Stroke Care
- Siemens and Medtronic Enter into Global Partnership for Advancing Spine Care Imaging Technologies
- RSNA 2024 Technical Exhibits to Showcase Latest Advances in Radiology
- Bracco Collaborates with Arrayus on Microbubble-Assisted Focused Ultrasound Therapy for Pancreatic Cancer
- Innovative Collaboration to Enhance Ischemic Stroke Detection and Elevate Standards in Diagnostic Imaging
- RSNA 2024 Registration Opens
- Microsoft collaborates with Leading Academic Medical Systems to Advance AI in Medical Imaging
- GE HealthCare Acquires Intelligent Ultrasound Group’s Clinical Artificial Intelligence Business
- Bayer and Rad AI Collaborate on Expanding Use of Cutting Edge AI Radiology Operational Solutions
- Polish Med-Tech Company BrainScan to Expand Extensively into Foreign Markets
- Hologic Acquires UK-Based Breast Surgical Guidance Company Endomagnetics Ltd.
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read moreUltrasound
view channel
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read more
Novel Imaging Method Enables Early Diagnosis and Treatment Monitoring of Type 2 Diabetes
Type 2 diabetes is recognized as an autoimmune inflammatory disease, where chronic inflammation leads to alterations in pancreatic islet microvasculature, a key factor in β-cell dysfunction.... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more