Dissecting AI to Better Understand the Human Brain
By MedImaging International staff writers Posted on 04 Apr 2018 |

Image: Cognitive neuroscientists are using the newly developed AI networks to enhance the understanding of the human brain (Photo courtesy of TechSource).
At the 25th annual meeting of the Cognitive Neuroscience Society (CNS) (Davis, CA, USA), researchers presented their work in which cognitive neuroscientists are increasingly using emerging artificial networks to enhance their understanding of one of the most elusive intelligence systems, the human brain. Among the work presented at the symposium at the CNS annual meeting held in Boston from March 24-27, 2018, was “Human and machine cognition: The deep learning challenge” by Aude Oliva of MIT. In Oliva’s work, neuroscientists are learning much about the role of contextual clues in human image recognition. By using “artificial neurons” – essentially lines of code, software – with neural network models, they can parse out the various elements that go into recognizing a specific place or object.
In a recent study of more than 10 million images, Oliva and colleagues taught an artificial network to recognize 350 different places, such as a kitchen, bedroom, park, living room, etc. While, they expected the network to learn objects such as a bed associated with a bedroom, they hardly expected the network to learn to recognize people and animals, such as dogs at parks and cats in the living rooms.
When given lots of data, machine intelligence programs learn very quickly, enabling them to parse contextual learning at such a fine level, according to Oliva. It is not possible to dissect human neurons at such a level, although the computer model performing a similar task is entirely transparent. The artificial neural networks serve as “mini-brains that can be studied, changed, evaluated, and compared against responses given by human neural networks, so the cognitive neuroscientists have some sort of sketch of how a real brain may function.”
“The fundamental questions cognitive neuroscientists and computer scientists seek to answer are similar. They have a complex system made of components – for one, it’s called neurons and for the other, it’s called units – and we are doing experiments to try to determine what those components calculate,” said Oliva. “Human cognitive and computational neuroscience is a fast-growing area of research, and knowledge about how the human brain is able to see, hear, feel, think, remember, and predict is mandatory to develop better diagnostic tools, to repair the brain, and to make sure it develops well.”
“The brain is a deep and complex neural network,” says Nikolaus Kriegeskorte of Columbia University, who is chairing the symposium. “Neural network models are brain-inspired models that are now state-of-the-art in many artificial intelligence applications, such as computer vision.”
According to Kriegeskorte, these models have helped neuroscientists understand how people can recognize the objects around them in the blink of an eye. “This involves millions of signals emanating from the retina, that sweep through a sequence of layers of neurons, extracting semantic information, for example that we’re looking at a street scene with several people and a dog,” he says. “Current neural network models can perform this kind of task using only computations that biological neurons can perform. Moreover, these neural network models can predict to some extent how a neuron deep in the brain will respond to any image.”
Using computer science to understand the human brain is a relatively new field that is expanding rapidly thanks to advancements in computing speed and power, along with neuroscience imaging tools. The artificial networks cannot yet replicate human visual abilities, according to Kriegeskorte, but by modeling the human brain, they are furthering understanding of both cognition and artificial intelligence. “It’s a uniquely exciting time to be working at the intersection of neuroscience, cognitive science, and AI,” added Kriegeskorte.
Related Links:
Cognitive Neuroscience Society
In a recent study of more than 10 million images, Oliva and colleagues taught an artificial network to recognize 350 different places, such as a kitchen, bedroom, park, living room, etc. While, they expected the network to learn objects such as a bed associated with a bedroom, they hardly expected the network to learn to recognize people and animals, such as dogs at parks and cats in the living rooms.
When given lots of data, machine intelligence programs learn very quickly, enabling them to parse contextual learning at such a fine level, according to Oliva. It is not possible to dissect human neurons at such a level, although the computer model performing a similar task is entirely transparent. The artificial neural networks serve as “mini-brains that can be studied, changed, evaluated, and compared against responses given by human neural networks, so the cognitive neuroscientists have some sort of sketch of how a real brain may function.”
“The fundamental questions cognitive neuroscientists and computer scientists seek to answer are similar. They have a complex system made of components – for one, it’s called neurons and for the other, it’s called units – and we are doing experiments to try to determine what those components calculate,” said Oliva. “Human cognitive and computational neuroscience is a fast-growing area of research, and knowledge about how the human brain is able to see, hear, feel, think, remember, and predict is mandatory to develop better diagnostic tools, to repair the brain, and to make sure it develops well.”
“The brain is a deep and complex neural network,” says Nikolaus Kriegeskorte of Columbia University, who is chairing the symposium. “Neural network models are brain-inspired models that are now state-of-the-art in many artificial intelligence applications, such as computer vision.”
According to Kriegeskorte, these models have helped neuroscientists understand how people can recognize the objects around them in the blink of an eye. “This involves millions of signals emanating from the retina, that sweep through a sequence of layers of neurons, extracting semantic information, for example that we’re looking at a street scene with several people and a dog,” he says. “Current neural network models can perform this kind of task using only computations that biological neurons can perform. Moreover, these neural network models can predict to some extent how a neuron deep in the brain will respond to any image.”
Using computer science to understand the human brain is a relatively new field that is expanding rapidly thanks to advancements in computing speed and power, along with neuroscience imaging tools. The artificial networks cannot yet replicate human visual abilities, according to Kriegeskorte, but by modeling the human brain, they are furthering understanding of both cognition and artificial intelligence. “It’s a uniquely exciting time to be working at the intersection of neuroscience, cognitive science, and AI,” added Kriegeskorte.
Related Links:
Cognitive Neuroscience Society
Latest Industry News News
- GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
- Patient-Specific 3D-Printed Phantoms Transform CT Imaging
- Siemens and Sectra Collaborate on Enhancing Radiology Workflows
- Bracco Diagnostics and ColoWatch Partner to Expand Availability CRC Screening Tests Using Virtual Colonoscopy
- Mindray Partners with TeleRay to Streamline Ultrasound Delivery
- Philips and Medtronic Partner on Stroke Care
- Siemens and Medtronic Enter into Global Partnership for Advancing Spine Care Imaging Technologies
- RSNA 2024 Technical Exhibits to Showcase Latest Advances in Radiology
- Bracco Collaborates with Arrayus on Microbubble-Assisted Focused Ultrasound Therapy for Pancreatic Cancer
- Innovative Collaboration to Enhance Ischemic Stroke Detection and Elevate Standards in Diagnostic Imaging
- RSNA 2024 Registration Opens
- Microsoft collaborates with Leading Academic Medical Systems to Advance AI in Medical Imaging
- GE HealthCare Acquires Intelligent Ultrasound Group’s Clinical Artificial Intelligence Business
- Bayer and Rad AI Collaborate on Expanding Use of Cutting Edge AI Radiology Operational Solutions
- Polish Med-Tech Company BrainScan to Expand Extensively into Foreign Markets
- Hologic Acquires UK-Based Breast Surgical Guidance Company Endomagnetics Ltd.
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read moreUltrasound
view channel
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read more
Novel Imaging Method Enables Early Diagnosis and Treatment Monitoring of Type 2 Diabetes
Type 2 diabetes is recognized as an autoimmune inflammatory disease, where chronic inflammation leads to alterations in pancreatic islet microvasculature, a key factor in β-cell dysfunction.... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more