Imaging Technique Provides Physicians and Researchers with New Tools
By MedImaging International staff writers Posted on 12 Sep 2016 |

Image: A multi-ciliated cell, as seen in a scanning electron micrograph (SEM) (Photo courtesy of Biomedical Optics Express).
A new optical imaging technique called biophotonics is providing researchers and clinicians with new non-invasive imaging tools to study biological molecules, tissue, and cells.
The technique could be used for cancer imaging and for other diseases, and makes use of infrared, near infrared, visible, and ultraviolet light instead of X-Rays or gamma radiation. The technique can image structures that are too small for X-Ray, Computed Tomography (CT), and Magnetic Resonance Imaging (MRI), and it does not harm the biological cells under investigation.
Biophotonics is expanding the boundaries of radiology and involves multiple medical, scientific, and engineering disciplines. One application of biophotonics is in a cross-sectional microscopic, high-speed, imaging modality called Optical Coherence Tomography (OCT) that is similar to ultrasound in that both use an echo-based paradigm. OCT is used by clinicians to study retina of the eye, and for the diagnosis of macular degeneration and glaucoma. Another modality is called Diffuse Optical Tomography (DOT) that uses near-infrared light for brain, breast, and other soft tissues imaging. The new tools could be also be used for intravascular imaging, the assessment of tumor margins during surgery, image-guided cardiovascular interventions, and the assessment of response to chemotherapy treatment.
Michael A. Choma, MD, PhD, principal investigator at the Yale Biophotonics Laboratory, and assistant professor, Yale University (New Haven, CT, USA), said, “With biophotonics, we can image very small-scale physiology at high-speed resolution. It’s highly complementary to MRI and CT and the technology continues to develop with advances in computing, light sources and cameras. The possibilities are expanding as the people who develop the technology work with the people who use it to improve screening and treatment.”
Related Links:
Yale University
The technique could be used for cancer imaging and for other diseases, and makes use of infrared, near infrared, visible, and ultraviolet light instead of X-Rays or gamma radiation. The technique can image structures that are too small for X-Ray, Computed Tomography (CT), and Magnetic Resonance Imaging (MRI), and it does not harm the biological cells under investigation.
Biophotonics is expanding the boundaries of radiology and involves multiple medical, scientific, and engineering disciplines. One application of biophotonics is in a cross-sectional microscopic, high-speed, imaging modality called Optical Coherence Tomography (OCT) that is similar to ultrasound in that both use an echo-based paradigm. OCT is used by clinicians to study retina of the eye, and for the diagnosis of macular degeneration and glaucoma. Another modality is called Diffuse Optical Tomography (DOT) that uses near-infrared light for brain, breast, and other soft tissues imaging. The new tools could be also be used for intravascular imaging, the assessment of tumor margins during surgery, image-guided cardiovascular interventions, and the assessment of response to chemotherapy treatment.
Michael A. Choma, MD, PhD, principal investigator at the Yale Biophotonics Laboratory, and assistant professor, Yale University (New Haven, CT, USA), said, “With biophotonics, we can image very small-scale physiology at high-speed resolution. It’s highly complementary to MRI and CT and the technology continues to develop with advances in computing, light sources and cameras. The possibilities are expanding as the people who develop the technology work with the people who use it to improve screening and treatment.”
Related Links:
Yale University
Latest Ultrasound News
- Non-Invasive Ultrasound-Based Tool Accurately Detects Infant Meningitis
- Breakthrough Deep Learning Model Enhances Handheld 3D Medical Imaging
- Pain-Free Breast Imaging System Performs One Minute Cancer Scan
- Wireless Chronic Pain Management Device to Reduce Need for Painkillers and Surgery
- New Medical Ultrasound Imaging Technique Enables ICU Bedside Monitoring
- New Incision-Free Technique Halts Growth of Debilitating Brain Lesions
- AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
- AI Identifies Heart Valve Disease from Common Imaging Test
- Novel Imaging Method Enables Early Diagnosis and Treatment Monitoring of Type 2 Diabetes
- Ultrasound-Based Microscopy Technique to Help Diagnose Small Vessel Diseases
- Smart Ultrasound-Activated Immune Cells Destroy Cancer Cells for Extended Periods
- Tiny Magnetic Robot Takes 3D Scans from Deep Within Body
- High Resolution Ultrasound Speeds Up Prostate Cancer Diagnosis
- World's First Wireless, Handheld, Whole-Body Ultrasound with Single PZT Transducer Makes Imaging More Accessible
- Artificial Intelligence Detects Undiagnosed Liver Disease from Echocardiograms
- Ultrasound Imaging Non-Invasively Tracks Tumor Response to Radiation and Immunotherapy
Channels
Radiography
view channel
AI Hybrid Strategy Improves Mammogram Interpretation
Breast cancer screening programs rely heavily on radiologists interpreting mammograms, a process that is time-intensive and subject to errors. While artificial intelligence (AI) models have shown strong... Read more
AI Technology Predicts Personalized Five-Year Risk of Developing Breast Cancer
Breast cancer remains one of the most common cancers among women, with about one in eight receiving a diagnosis in their lifetime. Despite widespread use of mammography, about 34% of patients in the U.... Read moreMRI
view channel
AI-Assisted Model Enhances MRI Heart Scans
A cardiac MRI can reveal critical information about the heart’s function and any abnormalities, but traditional scans take 30 to 90 minutes and often suffer from poor image quality due to patient movement.... Read more
AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
Hypertrophic cardiomyopathy is one of the most common inherited heart conditions and a leading cause of sudden cardiac death in young individuals and athletes. While many patients live normal lives, some... Read moreUltrasound
view channel
Non-Invasive Ultrasound-Based Tool Accurately Detects Infant Meningitis
Meningitis, an inflammation of the membranes surrounding the brain and spinal cord, can be fatal in infants if not diagnosed and treated early. Even when treated, it may leave lasting damage, such as cognitive... Read more
Breakthrough Deep Learning Model Enhances Handheld 3D Medical Imaging
Ultrasound imaging is a vital diagnostic technique used to visualize internal organs and tissues in real time and to guide procedures such as biopsies and injections. When paired with photoacoustic imaging... Read moreNuclear Medicine
view channel
New Camera Sees Inside Human Body for Enhanced Scanning and Diagnosis
Nuclear medicine scans like single-photon emission computed tomography (SPECT) allow doctors to observe heart function, track blood flow, and detect hidden diseases. However, current detectors are either... Read more
Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections
Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more