MR Imaging Technique Promises More Reliable Cancer Screening and Diagnosis
By MedImaging International staff writers Posted on 13 Jun 2016 |

Image: The EU-funded Horizon 2020 GlucoCEST Imaging in Neoplastic Tumours Project (Photo courtesy of GLINT 2016).
A project to develop a novel advanced medical imaging technology is intended to enable earlier detection of cancer, increase survival rates, and allow for a patients’ full recovery.
The new imaging technology is intended to provide more reliable and less invasive cancer diagnosis based on a novel Magnetic Resonance Imaging (MRI) technique that could lead to game-changing diagnostic tools for cancer imaging, and enable personalized cancer treatment.
The European Union (EU)-funded GlucoCEST Imaging of Neoplastic Tumours (GLINT) project began in January 2016, and makes use of a technique called glucose-based Chemical Exchange Saturation Transfer (glucoCEST). The technique can be used to detect the massive native glucose uptake in tumors as they grow. Previously such glucose measurements had to be made using a radio-labeled glucose imaging agent, and Positron Emission Tomography (PET) imaging. The new technique does not require contrast agents and enables closer treatment monitoring.
Scientific Coordinator of GLINT, and inventor of the glucoCEST method Professor Xavier Golay, University College London (London, UK), said, “GLINT offers for the first time a possibility to bring to the clinics a much-touted new imaging technique, allowing to directly image by MRI native, non-labeled glucose the way PET does it using the expensive radio-labeled sugar analogue fluorodeoxyglucose (FDG). This represents among others a huge hope for pediatric patients and for everyone required to undergo continuous surveillance of cancer progression. It also carries the hope to reduce or at least significantly limit the costs of diagnostic cancer imaging.”
Related Links:
University College London
The new imaging technology is intended to provide more reliable and less invasive cancer diagnosis based on a novel Magnetic Resonance Imaging (MRI) technique that could lead to game-changing diagnostic tools for cancer imaging, and enable personalized cancer treatment.
The European Union (EU)-funded GlucoCEST Imaging of Neoplastic Tumours (GLINT) project began in January 2016, and makes use of a technique called glucose-based Chemical Exchange Saturation Transfer (glucoCEST). The technique can be used to detect the massive native glucose uptake in tumors as they grow. Previously such glucose measurements had to be made using a radio-labeled glucose imaging agent, and Positron Emission Tomography (PET) imaging. The new technique does not require contrast agents and enables closer treatment monitoring.
Scientific Coordinator of GLINT, and inventor of the glucoCEST method Professor Xavier Golay, University College London (London, UK), said, “GLINT offers for the first time a possibility to bring to the clinics a much-touted new imaging technique, allowing to directly image by MRI native, non-labeled glucose the way PET does it using the expensive radio-labeled sugar analogue fluorodeoxyglucose (FDG). This represents among others a huge hope for pediatric patients and for everyone required to undergo continuous surveillance of cancer progression. It also carries the hope to reduce or at least significantly limit the costs of diagnostic cancer imaging.”
Related Links:
University College London
Latest MRI News
- New MRI Technique Reveals True Heart Age to Prevent Attacks and Strokes
- AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
- AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
- Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
- AI-Powered MRI Technology Improves Parkinson’s Diagnoses
- Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
- First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
- New Model Improves Comparison of MRIs Taken at Different Institutions
- Groundbreaking New Scanner Sees 'Previously Undetectable' Cancer Spread
- First-Of-Its-Kind Tool Analyzes MRI Scans to Measure Brain Aging
- AI-Enhanced MRI Images Make Cancerous Breast Tissue Glow
- AI Model Automatically Segments MRI Images
- New Research Supports Routine Brain MRI Screening in Asymptomatic Late-Stage Breast Cancer Patients
- Revolutionary Portable Device Performs Rapid MRI-Based Stroke Imaging at Patient's Bedside
- AI Predicts After-Effects of Brain Tumor Surgery from MRI Scans
- MRI-First Strategy for Prostate Cancer Detection Proven Safe
Channels
Radiography
view channel
AI Improves Early Detection of Interval Breast Cancers
Interval breast cancers, which occur between routine screenings, are easier to treat when detected earlier. Early detection can reduce the need for aggressive treatments and improve the chances of better outcomes.... Read more
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreNuclear Medicine
view channel
Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read moreGeneral/Advanced Imaging
view channel
CT-Based Deep Learning-Driven Tool to Enhance Liver Cancer Diagnosis
Medical imaging, such as computed tomography (CT) scans, plays a crucial role in oncology, offering essential data for cancer detection, treatment planning, and monitoring of response to therapies.... Read more
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more