Ventilation Percussion Improves Cardiac MRI Accuracy
By MedImaging International staff writers Posted on 09 Jun 2016 |

Image: Three-dimensional steady-state free precession acquisition of cardiac structures acquired during 6.2 minutes of apnea with PV (Photo courtesy of CHUV).
A novel ventilation technique allows cardiac magnetic resonance (CMR) imaging to be performed in virtual lack of motion.
Developed at University Hospital Lausanne (CHUV; Switzerland), the percussive ventilation (VP) technique involves the patients wearing a mask over their mouth, which is connected to a ventilator that delivers small volumes of air (percussions). Instead of the 10-15 large breaths patients would take naturally per minute, air is provided in 300-500 small VP pulses per minute. The air volumes inhaled are so small the chest does not move, allowing acquisition of higher quality images in less time.
In a study designed to test the feasibility and tolerability of high frequency PV during CMR, the researchers recruited two patients, one healthy volunteer and one patient with a thymic lesion. The procedure was well tolerated, and there was no need to correct for respiratory motion. Lung volumes were "frozen" in full inspiration, allowing the researchers to see both coronary arteries and pulmonary vessels. The study was presented at EuroCMR, held during May 2016 in Florence, Italy.
“The possibilities with high frequency PV are huge. You could run all the CMR sequences in one batch, which would be much faster; data could be acquired constantly with fewer artifacts,” said lead author and study presenter Professor Juerg Schwitter, MD, director of the CHUV CMR Centre. “We might be able to use this technique for diagnosis of sicker patients, who find breath holding difficult and need the imaging to be done quickly.”
"This technique would help us to collect high resolution images where we want millimetric precision, for example to localize scar in the myocardium or to see the anatomy of coronary arteries or valves and malformations,” added Professor Schwitter. “We could even imagine that if the patient is not breathing for 20 minutes, or even longer, this technique could give a precise 3D representation of cardiac structures and help guide electrophysiology procedures such as ablation."
CMR is a medical imaging technology for the non-invasive assessment of the function and structure of the cardiovascular system that is based on the same basic principles as magnetic resonance imaging (MRI), with optimizations that use rapid imaging sequences. As a result, CMR images are currently acquired in steps. Patients breathe in and then hold their breath for each image, then recover before repeating the process for the next image. PV could offer the potential to acquire all images in one go, with no need to correct for respiratory motion.
Related Links:
University Hospital Lausanne
Developed at University Hospital Lausanne (CHUV; Switzerland), the percussive ventilation (VP) technique involves the patients wearing a mask over their mouth, which is connected to a ventilator that delivers small volumes of air (percussions). Instead of the 10-15 large breaths patients would take naturally per minute, air is provided in 300-500 small VP pulses per minute. The air volumes inhaled are so small the chest does not move, allowing acquisition of higher quality images in less time.
In a study designed to test the feasibility and tolerability of high frequency PV during CMR, the researchers recruited two patients, one healthy volunteer and one patient with a thymic lesion. The procedure was well tolerated, and there was no need to correct for respiratory motion. Lung volumes were "frozen" in full inspiration, allowing the researchers to see both coronary arteries and pulmonary vessels. The study was presented at EuroCMR, held during May 2016 in Florence, Italy.
“The possibilities with high frequency PV are huge. You could run all the CMR sequences in one batch, which would be much faster; data could be acquired constantly with fewer artifacts,” said lead author and study presenter Professor Juerg Schwitter, MD, director of the CHUV CMR Centre. “We might be able to use this technique for diagnosis of sicker patients, who find breath holding difficult and need the imaging to be done quickly.”
"This technique would help us to collect high resolution images where we want millimetric precision, for example to localize scar in the myocardium or to see the anatomy of coronary arteries or valves and malformations,” added Professor Schwitter. “We could even imagine that if the patient is not breathing for 20 minutes, or even longer, this technique could give a precise 3D representation of cardiac structures and help guide electrophysiology procedures such as ablation."
CMR is a medical imaging technology for the non-invasive assessment of the function and structure of the cardiovascular system that is based on the same basic principles as magnetic resonance imaging (MRI), with optimizations that use rapid imaging sequences. As a result, CMR images are currently acquired in steps. Patients breathe in and then hold their breath for each image, then recover before repeating the process for the next image. PV could offer the potential to acquire all images in one go, with no need to correct for respiratory motion.
Related Links:
University Hospital Lausanne
Latest MRI News
- AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
- Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
- AI-Powered MRI Technology Improves Parkinson’s Diagnoses
- Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
- First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
- New Model Improves Comparison of MRIs Taken at Different Institutions
- Groundbreaking New Scanner Sees 'Previously Undetectable' Cancer Spread
- First-Of-Its-Kind Tool Analyzes MRI Scans to Measure Brain Aging
- AI-Enhanced MRI Images Make Cancerous Breast Tissue Glow
- AI Model Automatically Segments MRI Images
- New Research Supports Routine Brain MRI Screening in Asymptomatic Late-Stage Breast Cancer Patients
- Revolutionary Portable Device Performs Rapid MRI-Based Stroke Imaging at Patient's Bedside
- AI Predicts After-Effects of Brain Tumor Surgery from MRI Scans
- MRI-First Strategy for Prostate Cancer Detection Proven Safe
- First-Of-Its-Kind 10' x 48' Mobile MRI Scanner Transforms User and Patient Experience
- New Model Makes MRI More Accurate and Reliable
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more