MRI Shows Brain Anatomy Differences Between Autistic and Typically Developing Individuals to Be Mostly Indistinguishable
By MedImaging International staff writers Posted on 24 Nov 2014 |

Image: Differences in the brains of autistic and control subjects using MRI (Photo courtesy of Center of Cognitive Brain Imaging, Carnegie Mellon University).

Image: MR diffusion spectrum imaging (DSI) used to examine the structural integrity of white matter in people with autism and typical participants. These imaging techniques visualize axonal tracts by measuring the diffusion of water along white matter fibers (Photo courtesy of Center of Cognitive Brain Imaging, Carnegie Mellon University).
In the largest magnetic resonance imaging (MRI) study of patients with autism to date, Israeli and American researchers have shown that the brain anatomy in MRI scans of autistic individuals older than age six is mostly indistinguishable from that of typically developing individuals, and therefore, of little clinical or scientific value.
The researchers from Ben-Gurion University of the Negev (BGU; Be’er Sheva, Israel) and Carnegie Mellon University (Pittsburgh, PA, USA) published their findings online October 14, 2014, in the Oxford journal Cerebral Cortex. “Our findings offer definitive answers regarding several scientific controversies about brain anatomy, which have occupied autism research for the past 10 to 15 years,” said Dr. Ilan Dinstein of BGU’s departments of psychology and brain and cognitive sciences. “Previous hypotheses suggesting that autism is associated with larger intracranial gray matter, white matter, and amygdala volumes, or smaller cerebellar, corpus callosum and hippocampus volumes were mostly refuted by this new study.”
The researchers used data from the Autism Brain Imaging Data Exchange (ABIDE), which provides an unprecedented prospect to conduct large-scale comparisons of anatomic MRI scans across autism and control groups and resolve many outstanding questions. This recently released database is a worldwide collection of MRI scans from over 1,000 individuals (half with autism and half controls) ages 6 to 35 years old.
“In the study we performed very detailed anatomical examinations of the scans, which included dividing each brain into over 180 regions of interest and assessing multiple anatomical measures such as the volume, surface area and thickness of each region,” Dr. Dinstein stated.
The researchers then examined how the autism and control groups differed with respect to each region and also with respect to groups of regions using more complex analyses. “The most striking finding here was that anatomical differences within both the control group and the autistic group was immense and greatly overshadowed minute differences between the two groups,” Dr. Dinstein noted. “For example, individuals in the control group differ by 80% to 90% in their brain volumes, while differences in brain volume across autism and control groups differed by 2% to 3% percent at most. This led us to the conclusion that anatomical measures of brain volume or surface areas do not offer much information regarding the underlying mechanism or pathology of autistic spectrum disorder [ASD],” he stated. “These sobering results suggest that autism is not a disorder that is associated with specific anatomical pathology and as a result, anatomical measures alone are likely to be of low scientific and clinical significance for identifying children, adolescents and adults with ASD, or for elucidating their neuropathology.”
Dr. Dinstein believes that more complicated explanations involving combinations of measures in more homogeneous subgroups are in all probability to be the answer. “Expecting to find a single answer for the entire ASD population is naive. We need to move on to thinking about how to split up this very heterogeneous group of disorders into more meaningful biologically-relevant subgroups,” he stated.
This conclusion stands in great contrast to numerous reports of significant anatomical differences described by smaller studies, which have typically included comparisons of 40 to 50 individuals. “The problem with small samples, large within-group heterogeneity, and a scientific bias to report only positive findings, is that small samples are likely to yield significant differences across autism and control groups in a few of the 180 brain regions,” Dr. Dinstein explained.
“In such a situation one would expect that each study would find significant differences in different brain areas and that findings will be very inconsistent across studies," he says. "This is exactly what you see when you examine the autism anatomy literature from the last decade or so. Our study simply explains why this has been happening and puts an end to several ensuing debates.”
Related Links:
Ben-Gurion University of the Negev
Center of Cognitive Brain Imaging, Carnegie Mellon University
Carnegie Mellon University
The researchers from Ben-Gurion University of the Negev (BGU; Be’er Sheva, Israel) and Carnegie Mellon University (Pittsburgh, PA, USA) published their findings online October 14, 2014, in the Oxford journal Cerebral Cortex. “Our findings offer definitive answers regarding several scientific controversies about brain anatomy, which have occupied autism research for the past 10 to 15 years,” said Dr. Ilan Dinstein of BGU’s departments of psychology and brain and cognitive sciences. “Previous hypotheses suggesting that autism is associated with larger intracranial gray matter, white matter, and amygdala volumes, or smaller cerebellar, corpus callosum and hippocampus volumes were mostly refuted by this new study.”
The researchers used data from the Autism Brain Imaging Data Exchange (ABIDE), which provides an unprecedented prospect to conduct large-scale comparisons of anatomic MRI scans across autism and control groups and resolve many outstanding questions. This recently released database is a worldwide collection of MRI scans from over 1,000 individuals (half with autism and half controls) ages 6 to 35 years old.
“In the study we performed very detailed anatomical examinations of the scans, which included dividing each brain into over 180 regions of interest and assessing multiple anatomical measures such as the volume, surface area and thickness of each region,” Dr. Dinstein stated.
The researchers then examined how the autism and control groups differed with respect to each region and also with respect to groups of regions using more complex analyses. “The most striking finding here was that anatomical differences within both the control group and the autistic group was immense and greatly overshadowed minute differences between the two groups,” Dr. Dinstein noted. “For example, individuals in the control group differ by 80% to 90% in their brain volumes, while differences in brain volume across autism and control groups differed by 2% to 3% percent at most. This led us to the conclusion that anatomical measures of brain volume or surface areas do not offer much information regarding the underlying mechanism or pathology of autistic spectrum disorder [ASD],” he stated. “These sobering results suggest that autism is not a disorder that is associated with specific anatomical pathology and as a result, anatomical measures alone are likely to be of low scientific and clinical significance for identifying children, adolescents and adults with ASD, or for elucidating their neuropathology.”
Dr. Dinstein believes that more complicated explanations involving combinations of measures in more homogeneous subgroups are in all probability to be the answer. “Expecting to find a single answer for the entire ASD population is naive. We need to move on to thinking about how to split up this very heterogeneous group of disorders into more meaningful biologically-relevant subgroups,” he stated.
This conclusion stands in great contrast to numerous reports of significant anatomical differences described by smaller studies, which have typically included comparisons of 40 to 50 individuals. “The problem with small samples, large within-group heterogeneity, and a scientific bias to report only positive findings, is that small samples are likely to yield significant differences across autism and control groups in a few of the 180 brain regions,” Dr. Dinstein explained.
“In such a situation one would expect that each study would find significant differences in different brain areas and that findings will be very inconsistent across studies," he says. "This is exactly what you see when you examine the autism anatomy literature from the last decade or so. Our study simply explains why this has been happening and puts an end to several ensuing debates.”
Related Links:
Ben-Gurion University of the Negev
Center of Cognitive Brain Imaging, Carnegie Mellon University
Carnegie Mellon University
Latest MRI News
- First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
- New Model Improves Comparison of MRIs Taken at Different Institutions
- Groundbreaking New Scanner Sees 'Previously Undetectable' Cancer Spread
- First-Of-Its-Kind Tool Analyzes MRI Scans to Measure Brain Aging
- AI-Enhanced MRI Images Make Cancerous Breast Tissue Glow
- AI Model Automatically Segments MRI Images
- New Research Supports Routine Brain MRI Screening in Asymptomatic Late-Stage Breast Cancer Patients
- Revolutionary Portable Device Performs Rapid MRI-Based Stroke Imaging at Patient's Bedside
- AI Predicts After-Effects of Brain Tumor Surgery from MRI Scans
- MRI-First Strategy for Prostate Cancer Detection Proven Safe
- First-Of-Its-Kind 10' x 48' Mobile MRI Scanner Transforms User and Patient Experience
- New Model Makes MRI More Accurate and Reliable
- New Scan Method Shows Effects of Treatment on Lung Function in Real Time
- Simple Scan Could Identify Patients at Risk for Serious Heart Problems
- Pioneering MRI Technique Detects Pre-Malignant Pancreatic Lesions for The First Time
- Portable MRI Shows Promise for Expanding Brain Imaging for Alzheimer’s Disease
Channels
Radiography
view channel
Photon Counting Detectors Promise Fast Color X-Ray Images
For many years, healthcare professionals have depended on traditional 2D X-rays to diagnose common bone fractures, though small fractures or soft tissue damage, such as cancers, can often be missed.... Read more
AI Can Flag Mammograms for Supplemental MRI
To achieve the highest detection accuracy, international guidelines recommend combining mammography and MRI screening for women with a lifetime breast cancer risk of 20% or higher based on family history.... Read moreUltrasound
view channel
Artificial Intelligence Detects Undiagnosed Liver Disease from Echocardiograms
Echocardiography is a diagnostic procedure that uses ultrasound to visualize the heart and its associated structures. This imaging test is commonly used as an early screening method when doctors suspect... Read more
Ultrasound Imaging Non-Invasively Tracks Tumor Response to Radiation and Immunotherapy
While immunotherapy holds promise in the fight against triple-negative breast cancer, many patients fail to respond to current treatments. A major challenge has been predicting and monitoring how individual... Read moreNuclear Medicine
view channel![Image: [18F]3F4AP in a human subject after mild incomplete spinal cord injury (Photo courtesy of The Journal of Nuclear Medicine, DOI:10.2967/jnumed.124.268242) Image: [18F]3F4AP in a human subject after mild incomplete spinal cord injury (Photo courtesy of The Journal of Nuclear Medicine, DOI:10.2967/jnumed.124.268242)](https://globetechcdn.com/mobile_medicalimaging/images/stories/articles/article_images/2025-02-24/Brugarolas_F8.large.jpg)
Novel PET Technique Visualizes Spinal Cord Injuries to Predict Recovery
Each year, around 18,000 individuals in the United States experience spinal cord injuries, leading to severe mobility loss that often results in a lifelong battle to regain independence and improve quality of life.... Read more![Image: Autoradiography images showing binding of [18F]flortaucipir, [18F]MK6240, and [18F]PI2620 in prefrontal cortex, hippocampus, and cerebellum (A) and in whole-brain hemisphere (B) of control and AD brains (Photo courtesy of UFRGS) Image: Autoradiography images showing binding of [18F]flortaucipir, [18F]MK6240, and [18F]PI2620 in prefrontal cortex, hippocampus, and cerebellum (A) and in whole-brain hemisphere (B) of control and AD brains (Photo courtesy of UFRGS)](https://globetechcdn.com/mobile_medicalimaging/images/stories/articles/article_images/2025-02-12/F2.large.jpg)
Next-Gen Tau Radiotracers Outperform FDA-Approved Imaging Agents in Detecting Alzheimer’s
In Alzheimer’s disease, tau tangles are closely linked to cognitive decline: the greater the number of tangles, the more severe the cognitive impairment. By measuring the amount of tau in brain tissue... Read more
Breakthrough Method Detects Inflammation in Body Using PET Imaging
Inflammation is an immune response that helps protect the body against disease. However, when inflammation becomes chronic and excessive, it can lead to various long-term conditions, including cardiovascular... Read more
Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients
Prostate-specific membrane antigen–positron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read moreGeneral/Advanced Imaging
view channel
AI System Detects Subtle Changes in Series of Medical Images Over Time
Traditional approaches for analyzing longitudinal image datasets typically require significant customization and extensive pre-processing. For instance, in studies of the brain, researchers often begin... Read more
New CT Scan Technique to Improve Prognosis and Treatments for Head and Neck Cancers
Cancers of the mouth, nose, and throat are becoming increasingly common in the U.S., particularly among younger individuals. Approximately 60,000 new cases are diagnosed annually, with 20% of these cases... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more