MRI Shows Brain Anatomy Differences Between Autistic and Typically Developing Individuals to Be Mostly Indistinguishable
By MedImaging International staff writers Posted on 24 Nov 2014 |
Image: Differences in the brains of autistic and control subjects using MRI (Photo courtesy of Center of Cognitive Brain Imaging, Carnegie Mellon University).
Image: MR diffusion spectrum imaging (DSI) used to examine the structural integrity of white matter in people with autism and typical participants. These imaging techniques visualize axonal tracts by measuring the diffusion of water along white matter fibers (Photo courtesy of Center of Cognitive Brain Imaging, Carnegie Mellon University).
In the largest magnetic resonance imaging (MRI) study of patients with autism to date, Israeli and American researchers have shown that the brain anatomy in MRI scans of autistic individuals older than age six is mostly indistinguishable from that of typically developing individuals, and therefore, of little clinical or scientific value.
The researchers from Ben-Gurion University of the Negev (BGU; Be’er Sheva, Israel) and Carnegie Mellon University (Pittsburgh, PA, USA) published their findings online October 14, 2014, in the Oxford journal Cerebral Cortex. “Our findings offer definitive answers regarding several scientific controversies about brain anatomy, which have occupied autism research for the past 10 to 15 years,” said Dr. Ilan Dinstein of BGU’s departments of psychology and brain and cognitive sciences. “Previous hypotheses suggesting that autism is associated with larger intracranial gray matter, white matter, and amygdala volumes, or smaller cerebellar, corpus callosum and hippocampus volumes were mostly refuted by this new study.”
The researchers used data from the Autism Brain Imaging Data Exchange (ABIDE), which provides an unprecedented prospect to conduct large-scale comparisons of anatomic MRI scans across autism and control groups and resolve many outstanding questions. This recently released database is a worldwide collection of MRI scans from over 1,000 individuals (half with autism and half controls) ages 6 to 35 years old.
“In the study we performed very detailed anatomical examinations of the scans, which included dividing each brain into over 180 regions of interest and assessing multiple anatomical measures such as the volume, surface area and thickness of each region,” Dr. Dinstein stated.
The researchers then examined how the autism and control groups differed with respect to each region and also with respect to groups of regions using more complex analyses. “The most striking finding here was that anatomical differences within both the control group and the autistic group was immense and greatly overshadowed minute differences between the two groups,” Dr. Dinstein noted. “For example, individuals in the control group differ by 80% to 90% in their brain volumes, while differences in brain volume across autism and control groups differed by 2% to 3% percent at most. This led us to the conclusion that anatomical measures of brain volume or surface areas do not offer much information regarding the underlying mechanism or pathology of autistic spectrum disorder [ASD],” he stated. “These sobering results suggest that autism is not a disorder that is associated with specific anatomical pathology and as a result, anatomical measures alone are likely to be of low scientific and clinical significance for identifying children, adolescents and adults with ASD, or for elucidating their neuropathology.”
Dr. Dinstein believes that more complicated explanations involving combinations of measures in more homogeneous subgroups are in all probability to be the answer. “Expecting to find a single answer for the entire ASD population is naive. We need to move on to thinking about how to split up this very heterogeneous group of disorders into more meaningful biologically-relevant subgroups,” he stated.
This conclusion stands in great contrast to numerous reports of significant anatomical differences described by smaller studies, which have typically included comparisons of 40 to 50 individuals. “The problem with small samples, large within-group heterogeneity, and a scientific bias to report only positive findings, is that small samples are likely to yield significant differences across autism and control groups in a few of the 180 brain regions,” Dr. Dinstein explained.
“In such a situation one would expect that each study would find significant differences in different brain areas and that findings will be very inconsistent across studies," he says. "This is exactly what you see when you examine the autism anatomy literature from the last decade or so. Our study simply explains why this has been happening and puts an end to several ensuing debates.”
Related Links:
Ben-Gurion University of the Negev
Center of Cognitive Brain Imaging, Carnegie Mellon University
Carnegie Mellon University
The researchers from Ben-Gurion University of the Negev (BGU; Be’er Sheva, Israel) and Carnegie Mellon University (Pittsburgh, PA, USA) published their findings online October 14, 2014, in the Oxford journal Cerebral Cortex. “Our findings offer definitive answers regarding several scientific controversies about brain anatomy, which have occupied autism research for the past 10 to 15 years,” said Dr. Ilan Dinstein of BGU’s departments of psychology and brain and cognitive sciences. “Previous hypotheses suggesting that autism is associated with larger intracranial gray matter, white matter, and amygdala volumes, or smaller cerebellar, corpus callosum and hippocampus volumes were mostly refuted by this new study.”
The researchers used data from the Autism Brain Imaging Data Exchange (ABIDE), which provides an unprecedented prospect to conduct large-scale comparisons of anatomic MRI scans across autism and control groups and resolve many outstanding questions. This recently released database is a worldwide collection of MRI scans from over 1,000 individuals (half with autism and half controls) ages 6 to 35 years old.
“In the study we performed very detailed anatomical examinations of the scans, which included dividing each brain into over 180 regions of interest and assessing multiple anatomical measures such as the volume, surface area and thickness of each region,” Dr. Dinstein stated.
The researchers then examined how the autism and control groups differed with respect to each region and also with respect to groups of regions using more complex analyses. “The most striking finding here was that anatomical differences within both the control group and the autistic group was immense and greatly overshadowed minute differences between the two groups,” Dr. Dinstein noted. “For example, individuals in the control group differ by 80% to 90% in their brain volumes, while differences in brain volume across autism and control groups differed by 2% to 3% percent at most. This led us to the conclusion that anatomical measures of brain volume or surface areas do not offer much information regarding the underlying mechanism or pathology of autistic spectrum disorder [ASD],” he stated. “These sobering results suggest that autism is not a disorder that is associated with specific anatomical pathology and as a result, anatomical measures alone are likely to be of low scientific and clinical significance for identifying children, adolescents and adults with ASD, or for elucidating their neuropathology.”
Dr. Dinstein believes that more complicated explanations involving combinations of measures in more homogeneous subgroups are in all probability to be the answer. “Expecting to find a single answer for the entire ASD population is naive. We need to move on to thinking about how to split up this very heterogeneous group of disorders into more meaningful biologically-relevant subgroups,” he stated.
This conclusion stands in great contrast to numerous reports of significant anatomical differences described by smaller studies, which have typically included comparisons of 40 to 50 individuals. “The problem with small samples, large within-group heterogeneity, and a scientific bias to report only positive findings, is that small samples are likely to yield significant differences across autism and control groups in a few of the 180 brain regions,” Dr. Dinstein explained.
“In such a situation one would expect that each study would find significant differences in different brain areas and that findings will be very inconsistent across studies," he says. "This is exactly what you see when you examine the autism anatomy literature from the last decade or so. Our study simply explains why this has been happening and puts an end to several ensuing debates.”
Related Links:
Ben-Gurion University of the Negev
Center of Cognitive Brain Imaging, Carnegie Mellon University
Carnegie Mellon University
Latest MRI News
- AI Algorithm Detects 30% Of Breast Cancers Missed on MRI Scans
- Groundbreaking AI-Powered Software Significantly Enhances Brain MRI
- MRI Predicts Patient Outcomes and Tumor Recurrence in Rectal Cancer Patients
- Portable MRI System Dramatically Cuts Time-To-Scan vs. Conventional MRI in Stroke Patients
- Novel Model Identifies Focal Cortical Dysplasia Lesion from MRI Scans
- AI-Enhanced MRI Improves Diagnosis of Brain Disorders
- New Cardiac MRI Strategy Guides Ablation Procedures for Complex Tachycardias
- AI Model Achieves Clinical Expert Level Accuracy in Analyzing Complex MRIs and 3D Medical Scans
- MRI Provides Early Warning System for Glioblastoma Growth
- AI Algorithm Analyzes MRI Scans to Determine Best Rectal Cancer Treatment Strategy
- AI Software Uses MRI Scans to Automatically Segment Key Brain Structures for Improved Radiation Therapy Planning
- AI Software Analyzes Neuroimaging Data and Patient Information to Diagnose 10 Types of Dementia
- Metamaterials to Make MRI Scans Faster, Cheaper, and More Accurate
- Deep Learning Enables Accurate, Automated Quality Control Image Assessment for Liver MR Elastography
- Deep Learning-Based AI for Prostate MRI Helps Improve Risk Assessment and Avoid Unnecessary Biopsies
- Breakthrough Heart MRI Technique Accurately Predicts Heart Failure Risk in General Population