MRI Shows Brain Anatomy Differences Between Autistic and Typically Developing Individuals to Be Mostly Indistinguishable
By MedImaging International staff writers Posted on 24 Nov 2014 |

Image: Differences in the brains of autistic and control subjects using MRI (Photo courtesy of Center of Cognitive Brain Imaging, Carnegie Mellon University).

Image: MR diffusion spectrum imaging (DSI) used to examine the structural integrity of white matter in people with autism and typical participants. These imaging techniques visualize axonal tracts by measuring the diffusion of water along white matter fibers (Photo courtesy of Center of Cognitive Brain Imaging, Carnegie Mellon University).
In the largest magnetic resonance imaging (MRI) study of patients with autism to date, Israeli and American researchers have shown that the brain anatomy in MRI scans of autistic individuals older than age six is mostly indistinguishable from that of typically developing individuals, and therefore, of little clinical or scientific value.
The researchers from Ben-Gurion University of the Negev (BGU; Be’er Sheva, Israel) and Carnegie Mellon University (Pittsburgh, PA, USA) published their findings online October 14, 2014, in the Oxford journal Cerebral Cortex. “Our findings offer definitive answers regarding several scientific controversies about brain anatomy, which have occupied autism research for the past 10 to 15 years,” said Dr. Ilan Dinstein of BGU’s departments of psychology and brain and cognitive sciences. “Previous hypotheses suggesting that autism is associated with larger intracranial gray matter, white matter, and amygdala volumes, or smaller cerebellar, corpus callosum and hippocampus volumes were mostly refuted by this new study.”
The researchers used data from the Autism Brain Imaging Data Exchange (ABIDE), which provides an unprecedented prospect to conduct large-scale comparisons of anatomic MRI scans across autism and control groups and resolve many outstanding questions. This recently released database is a worldwide collection of MRI scans from over 1,000 individuals (half with autism and half controls) ages 6 to 35 years old.
“In the study we performed very detailed anatomical examinations of the scans, which included dividing each brain into over 180 regions of interest and assessing multiple anatomical measures such as the volume, surface area and thickness of each region,” Dr. Dinstein stated.
The researchers then examined how the autism and control groups differed with respect to each region and also with respect to groups of regions using more complex analyses. “The most striking finding here was that anatomical differences within both the control group and the autistic group was immense and greatly overshadowed minute differences between the two groups,” Dr. Dinstein noted. “For example, individuals in the control group differ by 80% to 90% in their brain volumes, while differences in brain volume across autism and control groups differed by 2% to 3% percent at most. This led us to the conclusion that anatomical measures of brain volume or surface areas do not offer much information regarding the underlying mechanism or pathology of autistic spectrum disorder [ASD],” he stated. “These sobering results suggest that autism is not a disorder that is associated with specific anatomical pathology and as a result, anatomical measures alone are likely to be of low scientific and clinical significance for identifying children, adolescents and adults with ASD, or for elucidating their neuropathology.”
Dr. Dinstein believes that more complicated explanations involving combinations of measures in more homogeneous subgroups are in all probability to be the answer. “Expecting to find a single answer for the entire ASD population is naive. We need to move on to thinking about how to split up this very heterogeneous group of disorders into more meaningful biologically-relevant subgroups,” he stated.
This conclusion stands in great contrast to numerous reports of significant anatomical differences described by smaller studies, which have typically included comparisons of 40 to 50 individuals. “The problem with small samples, large within-group heterogeneity, and a scientific bias to report only positive findings, is that small samples are likely to yield significant differences across autism and control groups in a few of the 180 brain regions,” Dr. Dinstein explained.
“In such a situation one would expect that each study would find significant differences in different brain areas and that findings will be very inconsistent across studies," he says. "This is exactly what you see when you examine the autism anatomy literature from the last decade or so. Our study simply explains why this has been happening and puts an end to several ensuing debates.”
Related Links:
Ben-Gurion University of the Negev
Center of Cognitive Brain Imaging, Carnegie Mellon University
Carnegie Mellon University
The researchers from Ben-Gurion University of the Negev (BGU; Be’er Sheva, Israel) and Carnegie Mellon University (Pittsburgh, PA, USA) published their findings online October 14, 2014, in the Oxford journal Cerebral Cortex. “Our findings offer definitive answers regarding several scientific controversies about brain anatomy, which have occupied autism research for the past 10 to 15 years,” said Dr. Ilan Dinstein of BGU’s departments of psychology and brain and cognitive sciences. “Previous hypotheses suggesting that autism is associated with larger intracranial gray matter, white matter, and amygdala volumes, or smaller cerebellar, corpus callosum and hippocampus volumes were mostly refuted by this new study.”
The researchers used data from the Autism Brain Imaging Data Exchange (ABIDE), which provides an unprecedented prospect to conduct large-scale comparisons of anatomic MRI scans across autism and control groups and resolve many outstanding questions. This recently released database is a worldwide collection of MRI scans from over 1,000 individuals (half with autism and half controls) ages 6 to 35 years old.
“In the study we performed very detailed anatomical examinations of the scans, which included dividing each brain into over 180 regions of interest and assessing multiple anatomical measures such as the volume, surface area and thickness of each region,” Dr. Dinstein stated.
The researchers then examined how the autism and control groups differed with respect to each region and also with respect to groups of regions using more complex analyses. “The most striking finding here was that anatomical differences within both the control group and the autistic group was immense and greatly overshadowed minute differences between the two groups,” Dr. Dinstein noted. “For example, individuals in the control group differ by 80% to 90% in their brain volumes, while differences in brain volume across autism and control groups differed by 2% to 3% percent at most. This led us to the conclusion that anatomical measures of brain volume or surface areas do not offer much information regarding the underlying mechanism or pathology of autistic spectrum disorder [ASD],” he stated. “These sobering results suggest that autism is not a disorder that is associated with specific anatomical pathology and as a result, anatomical measures alone are likely to be of low scientific and clinical significance for identifying children, adolescents and adults with ASD, or for elucidating their neuropathology.”
Dr. Dinstein believes that more complicated explanations involving combinations of measures in more homogeneous subgroups are in all probability to be the answer. “Expecting to find a single answer for the entire ASD population is naive. We need to move on to thinking about how to split up this very heterogeneous group of disorders into more meaningful biologically-relevant subgroups,” he stated.
This conclusion stands in great contrast to numerous reports of significant anatomical differences described by smaller studies, which have typically included comparisons of 40 to 50 individuals. “The problem with small samples, large within-group heterogeneity, and a scientific bias to report only positive findings, is that small samples are likely to yield significant differences across autism and control groups in a few of the 180 brain regions,” Dr. Dinstein explained.
“In such a situation one would expect that each study would find significant differences in different brain areas and that findings will be very inconsistent across studies," he says. "This is exactly what you see when you examine the autism anatomy literature from the last decade or so. Our study simply explains why this has been happening and puts an end to several ensuing debates.”
Related Links:
Ben-Gurion University of the Negev
Center of Cognitive Brain Imaging, Carnegie Mellon University
Carnegie Mellon University
Latest MRI News
- Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
- AI-Powered MRI Technology Improves Parkinson’s Diagnoses
- Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
- First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
- New Model Improves Comparison of MRIs Taken at Different Institutions
- Groundbreaking New Scanner Sees 'Previously Undetectable' Cancer Spread
- First-Of-Its-Kind Tool Analyzes MRI Scans to Measure Brain Aging
- AI-Enhanced MRI Images Make Cancerous Breast Tissue Glow
- AI Model Automatically Segments MRI Images
- New Research Supports Routine Brain MRI Screening in Asymptomatic Late-Stage Breast Cancer Patients
- Revolutionary Portable Device Performs Rapid MRI-Based Stroke Imaging at Patient's Bedside
- AI Predicts After-Effects of Brain Tumor Surgery from MRI Scans
- MRI-First Strategy for Prostate Cancer Detection Proven Safe
- First-Of-Its-Kind 10' x 48' Mobile MRI Scanner Transforms User and Patient Experience
- New Model Makes MRI More Accurate and Reliable
- New Scan Method Shows Effects of Treatment on Lung Function in Real Time
Channels
Radiography
view channel
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read more
Higher Chest X-Ray Usage Catches Lung Cancer Earlier and Improves Survival
Lung cancer continues to be the leading cause of cancer-related deaths worldwide. While advanced technologies like CT scanners play a crucial role in detecting lung cancer, more accessible and affordable... Read moreUltrasound
view channel
Tiny Magnetic Robot Takes 3D Scans from Deep Within Body
Colorectal cancer ranks as one of the leading causes of cancer-related mortality worldwide. However, when detected early, it is highly treatable. Now, a new minimally invasive technique could significantly... Read more
High Resolution Ultrasound Speeds Up Prostate Cancer Diagnosis
Each year, approximately one million prostate cancer biopsies are conducted across Europe, with similar numbers in the USA and around 100,000 in Canada. Most of these biopsies are performed using MRI images... Read more
World's First Wireless, Handheld, Whole-Body Ultrasound with Single PZT Transducer Makes Imaging More Accessible
Ultrasound devices play a vital role in the medical field, routinely used to examine the body's internal tissues and structures. While advancements have steadily improved ultrasound image quality and processing... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreGeneral/Advanced Imaging
view channel
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read more
Ultra-Low Dose CT Aids Pneumonia Diagnosis in Immunocompromised Patients
Lung infections can be life-threatening for patients with weakened immune systems, making timely diagnosis crucial. While CT scans are considered the gold standard for detecting pneumonia, repeated scans... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more