Concussion Recovery Time May Take Longer for Men
|
By MedImaging International staff writers Posted on 22 May 2014 |

Image: Uncinate fasiculus, an important tract with the greatest concentration of progesterone receptors, show greater injury in males than females after mild traumatic brain injury (mTBI). (a) Axial and (b) coronal images show regions of decreased fractional anisotropy in male patients with mTBI relative to female mTBI patients, involving the uncinate fasiculus (red) bilaterally (Photo courtesy of Radiology).
A study of concussion patients using diffusion tensor imaging (DTI) found that males took longer to recover after concussion than females did. The study’s findings revealed that DTI can be used as a bias-free approach to predict concussion outcome.
The study’s findings were published online May 6, 2014, in the journal Radiology. More than 17 million individuals in the United States suffer a mild traumatic brain injury (mTBI) yearly, also known as a concussion, of which approximately 15% suffer persistent symptoms beyond three months.
Evaluating outcomes and recovery time after concussion can be very subjective. Typically, clinicians must rely on patient cooperation to assess injury severity. “MRI [magnetic resonance imaging] and CT [computed tomography] brain images of concussion patients are often normal,” said Saeed Fakhran, MD, assistant professor of neuroradiology at the University of Pittsburgh School of Medicine (PA, USA). “Diffusion tensor imaging is the first imaging technique that shows abnormalities associated with concussion, because it is able to see white matter tracts at a microscopic level.”
The investigators studied the medical records and imaging results of 69 patients diagnosed with mTBI between 2006 and 2013, including 47 males and 22 females, and 21 controls consisting of 10 males and 11 females (median age of males: 17; median age of females: 16). Of the 47 males with mTBI, 32 (68%) were injured while playing a sport, as were 10 of the 22 females (45%).
All patients underwent the same evaluation, including a computerized neurocognitive test and DTI of the brain. The DTI scans of the mTBI patients revealed abnormalities within the uncinate fasciculi (UF), a white matter tract that connects the frontal and temporal lobes of the brain. Although its precise role is controversial, the UF tract is believed to allow temporal lobe-based memory associations to modify behavior though interactions with another area of the brain.
The DTI scans revealed that compared to the female mTBI patients, the male mTBI patients had significantly decreased UF FA values. “In the future, we would like to look at the issue of gender and concussions more in depth to determine who does better and why,” Dr. Fakhran said.
A statistical analysis of the data revealed that UF FA value was a stronger predictor of recovery time than initial symptom severity based on neurocognitive testing. The most substantial risk factor for a recovery time longer than three months was decreased UF FA. Male gender also directly correlated with increased recovery time. “The potential of DTI and UF FA to predict outcome after concussion has great clinical impact,” Dr. Fakhran said. “Currently, we are heavily reliant on patient reporting, and patients may have ulterior motives, such as wanting to get back to play. But you can’t trick an MR scanner.”
The median time to symptom recovery for all concussion patients was 54 days. However, compared to the female patients who recovered in an average of 26.3 days, recovery substantially took longer for the male patients (an average of 66.9 days), regardless of the first symptom severity. “Male gender and UF FA values are independent risk factors for persistent postconcussion symptoms after three months and stronger predictors of time to recovery than initial symptom severity or neurocognitive test results,” Dr. Fakhran said.
Dr. Fakhran reported that the study’s findings indicate a potential role for UF FA values in triaging concussion patients in the future. “There’s prognostic value in DTI for both children participating in sports as well as for professional athletes,” he said. “Lower FA values in the uncinate fasciculi could offer a metric for evaluating the severity of mild traumatic brain injuries and predicting clinical outcome. We’re not at the point where DTI can provide individual prognoses yet, but that’s the hope and goal.”
Related Links:
University of Pittsburgh School of Medicine
The study’s findings were published online May 6, 2014, in the journal Radiology. More than 17 million individuals in the United States suffer a mild traumatic brain injury (mTBI) yearly, also known as a concussion, of which approximately 15% suffer persistent symptoms beyond three months.
Evaluating outcomes and recovery time after concussion can be very subjective. Typically, clinicians must rely on patient cooperation to assess injury severity. “MRI [magnetic resonance imaging] and CT [computed tomography] brain images of concussion patients are often normal,” said Saeed Fakhran, MD, assistant professor of neuroradiology at the University of Pittsburgh School of Medicine (PA, USA). “Diffusion tensor imaging is the first imaging technique that shows abnormalities associated with concussion, because it is able to see white matter tracts at a microscopic level.”
The investigators studied the medical records and imaging results of 69 patients diagnosed with mTBI between 2006 and 2013, including 47 males and 22 females, and 21 controls consisting of 10 males and 11 females (median age of males: 17; median age of females: 16). Of the 47 males with mTBI, 32 (68%) were injured while playing a sport, as were 10 of the 22 females (45%).
All patients underwent the same evaluation, including a computerized neurocognitive test and DTI of the brain. The DTI scans of the mTBI patients revealed abnormalities within the uncinate fasciculi (UF), a white matter tract that connects the frontal and temporal lobes of the brain. Although its precise role is controversial, the UF tract is believed to allow temporal lobe-based memory associations to modify behavior though interactions with another area of the brain.
The DTI scans revealed that compared to the female mTBI patients, the male mTBI patients had significantly decreased UF FA values. “In the future, we would like to look at the issue of gender and concussions more in depth to determine who does better and why,” Dr. Fakhran said.
A statistical analysis of the data revealed that UF FA value was a stronger predictor of recovery time than initial symptom severity based on neurocognitive testing. The most substantial risk factor for a recovery time longer than three months was decreased UF FA. Male gender also directly correlated with increased recovery time. “The potential of DTI and UF FA to predict outcome after concussion has great clinical impact,” Dr. Fakhran said. “Currently, we are heavily reliant on patient reporting, and patients may have ulterior motives, such as wanting to get back to play. But you can’t trick an MR scanner.”
The median time to symptom recovery for all concussion patients was 54 days. However, compared to the female patients who recovered in an average of 26.3 days, recovery substantially took longer for the male patients (an average of 66.9 days), regardless of the first symptom severity. “Male gender and UF FA values are independent risk factors for persistent postconcussion symptoms after three months and stronger predictors of time to recovery than initial symptom severity or neurocognitive test results,” Dr. Fakhran said.
Dr. Fakhran reported that the study’s findings indicate a potential role for UF FA values in triaging concussion patients in the future. “There’s prognostic value in DTI for both children participating in sports as well as for professional athletes,” he said. “Lower FA values in the uncinate fasciculi could offer a metric for evaluating the severity of mild traumatic brain injuries and predicting clinical outcome. We’re not at the point where DTI can provide individual prognoses yet, but that’s the hope and goal.”
Related Links:
University of Pittsburgh School of Medicine
Latest MRI News
- MRI Scans Reveal Signature Patterns of Brain Activity to Predict Recovery from TBI
- Novel Imaging Approach to Improve Treatment for Spinal Cord Injuries
- AI-Assisted Model Enhances MRI Heart Scans
- AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
- New MRI Technique Reveals Hidden Heart Issues
- Shorter MRI Exam Effectively Detects Cancer in Dense Breasts
- MRI to Replace Painful Spinal Tap for Faster MS Diagnosis
- MRI Scans Can Identify Cardiovascular Disease Ten Years in Advance
- Simple Brain Scan Diagnoses Parkinson's Disease Years Before It Becomes Untreatable
- Cutting-Edge MRI Technology to Revolutionize Diagnosis of Common Heart Problem
- New MRI Technique Reveals True Heart Age to Prevent Attacks and Strokes
- AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
- AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
- Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
- AI-Powered MRI Technology Improves Parkinson’s Diagnoses
- Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Channels
Radiography
view channel
Routine Mammograms Could Predict Future Cardiovascular Disease in Women
Mammograms are widely used to screen for breast cancer, but they may also contain overlooked clues about cardiovascular health. Calcium deposits in the arteries of the breast signal stiffening blood vessels,... Read more
AI Detects Early Signs of Aging from Chest X-Rays
Chronological age does not always reflect how fast the body is truly aging, and current biological age tests often rely on DNA-based markers that may miss early organ-level decline. Detecting subtle, age-related... Read moreUltrasound
view channel
Wearable Ultrasound Imaging System to Enable Real-Time Disease Monitoring
Chronic conditions such as hypertension and heart failure require close monitoring, yet today’s ultrasound imaging is largely confined to hospitals and short, episodic scans. This reactive model limits... Read more
Ultrasound Technique Visualizes Deep Blood Vessels in 3D Without Contrast Agents
Producing clear 3D images of deep blood vessels has long been difficult without relying on contrast agents, CT scans, or MRI. Standard ultrasound typically provides only 2D cross-sections, limiting clinicians’... Read moreNuclear Medicine
view channel
PET Imaging of Inflammation Predicts Recovery and Guides Therapy After Heart Attack
Acute myocardial infarction can trigger lasting heart damage, yet clinicians still lack reliable tools to identify which patients will regain function and which may develop heart failure.... Read more
Radiotheranostic Approach Detects, Kills and Reprograms Aggressive Cancers
Aggressive cancers such as osteosarcoma and glioblastoma often resist standard therapies, thrive in hostile tumor environments, and recur despite surgery, radiation, or chemotherapy. These tumors also... Read more
New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer
Detecting recurrent prostate cancer remains one of the most difficult challenges in oncology, as standard imaging methods such as bone scans and CT scans often fail to accurately locate small or early-stage tumors.... Read moreGeneral/Advanced Imaging
view channel
AI-Based Tool Accelerates Detection of Kidney Cancer
Diagnosing kidney cancer depends on computed tomography scans, often using contrast agents to reveal abnormalities in kidney structure. Tumors are not always searched for deliberately, as many scans are... Read more
New Algorithm Dramatically Speeds Up Stroke Detection Scans
When patients arrive at emergency rooms with stroke symptoms, clinicians must rapidly determine whether the cause is a blood clot or a brain bleed, as treatment decisions depend on this distinction.... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read morePatient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more







