Tumor Imaging Improved by Oxygen Nanosensor Technology
By MedImaging International staff writers Posted on 01 Sep 2009 |
A newly developed material, an oxygen nanosensor that couples a light-emitting dye with a biopolymer, simplifies the imaging of oxygen-deficient regions of tumors. Such tumors are associated with increased cancer aggressiveness and are particularly difficult to treat.
Oxygen nanosensors are powerful new research tools that one day may also be used for the diagnosis and detection of diseases and for planning treatment strategies. The new material is based on poly(lactic acid), a biorenewable, biodegradable polymer that is safe for the body and the environment, and is easy and inexpensive to fabricate in many forms, including fibers, films, and nanoparticles. It is useful for medical research as well as environmental research, sustainable design and green products, too.
The versatile sensor material is the result of research combining green chemistry with nanotechnology, and is reported in the August 2009 online edition of the journal Nature Materials. Chemists from the University of Virginia (UVa; Charlottesville, USA) developed the material and consulted with cancer researchers at the UVa Cancer Center and Duke University Medical Center (Durham, NC, USA; http://medschool.duke.edu) to determine possible applications.
Guoqing Zhang, a UVa chemistry doctoral candidate, working with Dr. Cassandra Fraser, a UVa chemistry professor, synthesized the new material by combining a corn-based biopolymer with a dye that is both fluorescent and phosphorescent. The phosphorescence appears as a long-lived afterglow that is only evident under low oxygen or oxygen-free conditions.
Mr. Zhang devised a method to adjust the relative intensities of short-lived blue fluorescence and long-lived yellow phosphorescence, ultimately creating a calibrated colorful glow that allows visualization of even minute levels of oxygen. The biomaterial displays its oxygen-sensitive phosphorescence at room or body temperature, making it ideal for use in tissues.
"We were amazed at how easy the material was to synthesize and fabricate as films and nanoparticles, and how useful it is for measuring low oxygen concentrations,” Dr. Fraser said.
"It is based on a bio-friendly material,” added Dr. Zhang. "It is safe for the body and the environment, and so we realized it could have applications not just for medical research and developing improved disease treatments, but also for new sustainable technologies.”
Cancer researchers promptly realized that the new material could be particularly useful for real-time and extended-time spatial mapping of oxygen levels in tumors. This is important because a lack of sufficient oxygen in tumors, called hypoxia, is a major source of resistance to radiation and chemotherapy treatment, and promotes a greater degree of malignancy. "We have found that these nanoparticles were directly applicable to our existing tumor models,” said Greg Palmer, assistant professor of radiation oncology at Duke University Medical Center. "This technology will enable us to better characterize the influence of tumor hypoxia on tumor growth and treatment response.”
Researchers and clinicians have long looked for effective ways to locate and map low-oxygen areas in the body to understand better normal and disease processes. At present, there are no simple, easy, or inexpensive methods, preclinical or clinical, for generating oxygen maps of tumors and surrounding tissues with good spatial and temporal resolution.
"The method developed here holds great promise for being able to perform measurements of tumor hypoxia cost-effectively,” said study coauthor Dr. Mark Dewhirst, a professor of radiation oncology, pathology, and biomedical engineering at Duke. "This kind of tool could greatly increase our knowledge about methods to eliminate tumor hypoxia, which could lead to more effective treatments.”
"Tumors that have insufficient oxygen tend to be more likely to spread from the primary site to other parts of the body,” added Dr. Michael Weber, director of UVa's Cancer Center. "Despite the overall importance of tumor hypoxia, it is very difficult to measure directly and most methods that are available are very expensive.”
The new material currently is being used in preclinical studies to gain insight into cancer biology and treatment response, which could be useful for drug development and testing. "This technology enables entirely new insights to be obtained, allowing imaging of tumor hypoxia on the scale of tumor cells and small blood vessels,” Dr. Palmer said.
Eventually the material could be used as an injectable nanosensor, potentially providing continual data on oxygen levels, biologic processes, and therapy responsiveness. Hypoxia also is linked to cardiovascular disease, stroke, and diabetes, so the material developed by Mr. Zhang and Dr. Fraser could have applications in several areas of medicine.
Applications for the light-emitting biomaterial beyond medicine include molecular probes for cell biology, imaging agents for visualizing fluid and aerodynamics, and oxygen sensors for food and drug packaging, tamper resistant seals, and environmental monitoring, such as measuring oxygen levels in bodies of water.
Related Links:
University of Virginia
Duke University Medical Center
Oxygen nanosensors are powerful new research tools that one day may also be used for the diagnosis and detection of diseases and for planning treatment strategies. The new material is based on poly(lactic acid), a biorenewable, biodegradable polymer that is safe for the body and the environment, and is easy and inexpensive to fabricate in many forms, including fibers, films, and nanoparticles. It is useful for medical research as well as environmental research, sustainable design and green products, too.
The versatile sensor material is the result of research combining green chemistry with nanotechnology, and is reported in the August 2009 online edition of the journal Nature Materials. Chemists from the University of Virginia (UVa; Charlottesville, USA) developed the material and consulted with cancer researchers at the UVa Cancer Center and Duke University Medical Center (Durham, NC, USA; http://medschool.duke.edu) to determine possible applications.
Guoqing Zhang, a UVa chemistry doctoral candidate, working with Dr. Cassandra Fraser, a UVa chemistry professor, synthesized the new material by combining a corn-based biopolymer with a dye that is both fluorescent and phosphorescent. The phosphorescence appears as a long-lived afterglow that is only evident under low oxygen or oxygen-free conditions.
Mr. Zhang devised a method to adjust the relative intensities of short-lived blue fluorescence and long-lived yellow phosphorescence, ultimately creating a calibrated colorful glow that allows visualization of even minute levels of oxygen. The biomaterial displays its oxygen-sensitive phosphorescence at room or body temperature, making it ideal for use in tissues.
"We were amazed at how easy the material was to synthesize and fabricate as films and nanoparticles, and how useful it is for measuring low oxygen concentrations,” Dr. Fraser said.
"It is based on a bio-friendly material,” added Dr. Zhang. "It is safe for the body and the environment, and so we realized it could have applications not just for medical research and developing improved disease treatments, but also for new sustainable technologies.”
Cancer researchers promptly realized that the new material could be particularly useful for real-time and extended-time spatial mapping of oxygen levels in tumors. This is important because a lack of sufficient oxygen in tumors, called hypoxia, is a major source of resistance to radiation and chemotherapy treatment, and promotes a greater degree of malignancy. "We have found that these nanoparticles were directly applicable to our existing tumor models,” said Greg Palmer, assistant professor of radiation oncology at Duke University Medical Center. "This technology will enable us to better characterize the influence of tumor hypoxia on tumor growth and treatment response.”
Researchers and clinicians have long looked for effective ways to locate and map low-oxygen areas in the body to understand better normal and disease processes. At present, there are no simple, easy, or inexpensive methods, preclinical or clinical, for generating oxygen maps of tumors and surrounding tissues with good spatial and temporal resolution.
"The method developed here holds great promise for being able to perform measurements of tumor hypoxia cost-effectively,” said study coauthor Dr. Mark Dewhirst, a professor of radiation oncology, pathology, and biomedical engineering at Duke. "This kind of tool could greatly increase our knowledge about methods to eliminate tumor hypoxia, which could lead to more effective treatments.”
"Tumors that have insufficient oxygen tend to be more likely to spread from the primary site to other parts of the body,” added Dr. Michael Weber, director of UVa's Cancer Center. "Despite the overall importance of tumor hypoxia, it is very difficult to measure directly and most methods that are available are very expensive.”
The new material currently is being used in preclinical studies to gain insight into cancer biology and treatment response, which could be useful for drug development and testing. "This technology enables entirely new insights to be obtained, allowing imaging of tumor hypoxia on the scale of tumor cells and small blood vessels,” Dr. Palmer said.
Eventually the material could be used as an injectable nanosensor, potentially providing continual data on oxygen levels, biologic processes, and therapy responsiveness. Hypoxia also is linked to cardiovascular disease, stroke, and diabetes, so the material developed by Mr. Zhang and Dr. Fraser could have applications in several areas of medicine.
Applications for the light-emitting biomaterial beyond medicine include molecular probes for cell biology, imaging agents for visualizing fluid and aerodynamics, and oxygen sensors for food and drug packaging, tamper resistant seals, and environmental monitoring, such as measuring oxygen levels in bodies of water.
Related Links:
University of Virginia
Duke University Medical Center
Latest MRI News
- AI-Assisted Model Enhances MRI Heart Scans
- AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
- New MRI Technique Reveals Hidden Heart Issues
- Shorter MRI Exam Effectively Detects Cancer in Dense Breasts
- MRI to Replace Painful Spinal Tap for Faster MS Diagnosis
- MRI Scans Can Identify Cardiovascular Disease Ten Years in Advance
- Simple Brain Scan Diagnoses Parkinson's Disease Years Before It Becomes Untreatable
- Cutting-Edge MRI Technology to Revolutionize Diagnosis of Common Heart Problem
- New MRI Technique Reveals True Heart Age to Prevent Attacks and Strokes
- AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
- AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
- Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
- AI-Powered MRI Technology Improves Parkinson’s Diagnoses
- Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
- First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
- New Model Improves Comparison of MRIs Taken at Different Institutions
Channels
Radiography
view channel
AI Hybrid Strategy Improves Mammogram Interpretation
Breast cancer screening programs rely heavily on radiologists interpreting mammograms, a process that is time-intensive and subject to errors. While artificial intelligence (AI) models have shown strong... Read more
AI Technology Predicts Personalized Five-Year Risk of Developing Breast Cancer
Breast cancer remains one of the most common cancers among women, with about one in eight receiving a diagnosis in their lifetime. Despite widespread use of mammography, about 34% of patients in the U.... Read moreUltrasound
view channel
Non-Invasive Ultrasound-Based Tool Accurately Detects Infant Meningitis
Meningitis, an inflammation of the membranes surrounding the brain and spinal cord, can be fatal in infants if not diagnosed and treated early. Even when treated, it may leave lasting damage, such as cognitive... Read more
Breakthrough Deep Learning Model Enhances Handheld 3D Medical Imaging
Ultrasound imaging is a vital diagnostic technique used to visualize internal organs and tissues in real time and to guide procedures such as biopsies and injections. When paired with photoacoustic imaging... Read moreNuclear Medicine
view channel
New Camera Sees Inside Human Body for Enhanced Scanning and Diagnosis
Nuclear medicine scans like single-photon emission computed tomography (SPECT) allow doctors to observe heart function, track blood flow, and detect hidden diseases. However, current detectors are either... Read more
Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections
Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read moreGeneral/Advanced Imaging
view channel
Cutting-Edge Angio-CT Solution Offers New Therapeutic Possibilities
Maintaining accuracy and safety in interventional radiology is a constant challenge, especially as complex procedures require both high precision and efficiency. Traditional setups often involve multiple... Read more
Extending CT Imaging Detects Hidden Blood Clots in Stroke Patients
Strokes caused by blood clots or other mechanisms that obstruct blood flow in the brain account for about 85% of all strokes. Determining where a clot originates is crucial, since it guides safe and effective... Read more
Groundbreaking AI Model Accurately Segments Liver Tumors from CT Scans
Liver cancer is the sixth most common cancer worldwide and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is critical for diagnosis and therapy, but manual methods by radiologists... Read more
New CT-Based Indicator Helps Predict Life-Threatening Postpartum Bleeding Cases
Postpartum hemorrhage (PPH) is a leading cause of maternal death worldwide. While most cases can be controlled with medications and basic interventions, some become life-threatening and require invasive treatments.... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more