Tumor Imaging Improved by Oxygen Nanosensor Technology
|
By MedImaging International staff writers Posted on 01 Sep 2009 |
A newly developed material, an oxygen nanosensor that couples a light-emitting dye with a biopolymer, simplifies the imaging of oxygen-deficient regions of tumors. Such tumors are associated with increased cancer aggressiveness and are particularly difficult to treat.
Oxygen nanosensors are powerful new research tools that one day may also be used for the diagnosis and detection of diseases and for planning treatment strategies. The new material is based on poly(lactic acid), a biorenewable, biodegradable polymer that is safe for the body and the environment, and is easy and inexpensive to fabricate in many forms, including fibers, films, and nanoparticles. It is useful for medical research as well as environmental research, sustainable design and green products, too.
The versatile sensor material is the result of research combining green chemistry with nanotechnology, and is reported in the August 2009 online edition of the journal Nature Materials. Chemists from the University of Virginia (UVa; Charlottesville, USA) developed the material and consulted with cancer researchers at the UVa Cancer Center and Duke University Medical Center (Durham, NC, USA; http://medschool.duke.edu) to determine possible applications.
Guoqing Zhang, a UVa chemistry doctoral candidate, working with Dr. Cassandra Fraser, a UVa chemistry professor, synthesized the new material by combining a corn-based biopolymer with a dye that is both fluorescent and phosphorescent. The phosphorescence appears as a long-lived afterglow that is only evident under low oxygen or oxygen-free conditions.
Mr. Zhang devised a method to adjust the relative intensities of short-lived blue fluorescence and long-lived yellow phosphorescence, ultimately creating a calibrated colorful glow that allows visualization of even minute levels of oxygen. The biomaterial displays its oxygen-sensitive phosphorescence at room or body temperature, making it ideal for use in tissues.
"We were amazed at how easy the material was to synthesize and fabricate as films and nanoparticles, and how useful it is for measuring low oxygen concentrations,” Dr. Fraser said.
"It is based on a bio-friendly material,” added Dr. Zhang. "It is safe for the body and the environment, and so we realized it could have applications not just for medical research and developing improved disease treatments, but also for new sustainable technologies.”
Cancer researchers promptly realized that the new material could be particularly useful for real-time and extended-time spatial mapping of oxygen levels in tumors. This is important because a lack of sufficient oxygen in tumors, called hypoxia, is a major source of resistance to radiation and chemotherapy treatment, and promotes a greater degree of malignancy. "We have found that these nanoparticles were directly applicable to our existing tumor models,” said Greg Palmer, assistant professor of radiation oncology at Duke University Medical Center. "This technology will enable us to better characterize the influence of tumor hypoxia on tumor growth and treatment response.”
Researchers and clinicians have long looked for effective ways to locate and map low-oxygen areas in the body to understand better normal and disease processes. At present, there are no simple, easy, or inexpensive methods, preclinical or clinical, for generating oxygen maps of tumors and surrounding tissues with good spatial and temporal resolution.
"The method developed here holds great promise for being able to perform measurements of tumor hypoxia cost-effectively,” said study coauthor Dr. Mark Dewhirst, a professor of radiation oncology, pathology, and biomedical engineering at Duke. "This kind of tool could greatly increase our knowledge about methods to eliminate tumor hypoxia, which could lead to more effective treatments.”
"Tumors that have insufficient oxygen tend to be more likely to spread from the primary site to other parts of the body,” added Dr. Michael Weber, director of UVa's Cancer Center. "Despite the overall importance of tumor hypoxia, it is very difficult to measure directly and most methods that are available are very expensive.”
The new material currently is being used in preclinical studies to gain insight into cancer biology and treatment response, which could be useful for drug development and testing. "This technology enables entirely new insights to be obtained, allowing imaging of tumor hypoxia on the scale of tumor cells and small blood vessels,” Dr. Palmer said.
Eventually the material could be used as an injectable nanosensor, potentially providing continual data on oxygen levels, biologic processes, and therapy responsiveness. Hypoxia also is linked to cardiovascular disease, stroke, and diabetes, so the material developed by Mr. Zhang and Dr. Fraser could have applications in several areas of medicine.
Applications for the light-emitting biomaterial beyond medicine include molecular probes for cell biology, imaging agents for visualizing fluid and aerodynamics, and oxygen sensors for food and drug packaging, tamper resistant seals, and environmental monitoring, such as measuring oxygen levels in bodies of water.
Related Links:
University of Virginia
Duke University Medical Center
Oxygen nanosensors are powerful new research tools that one day may also be used for the diagnosis and detection of diseases and for planning treatment strategies. The new material is based on poly(lactic acid), a biorenewable, biodegradable polymer that is safe for the body and the environment, and is easy and inexpensive to fabricate in many forms, including fibers, films, and nanoparticles. It is useful for medical research as well as environmental research, sustainable design and green products, too.
The versatile sensor material is the result of research combining green chemistry with nanotechnology, and is reported in the August 2009 online edition of the journal Nature Materials. Chemists from the University of Virginia (UVa; Charlottesville, USA) developed the material and consulted with cancer researchers at the UVa Cancer Center and Duke University Medical Center (Durham, NC, USA; http://medschool.duke.edu) to determine possible applications.
Guoqing Zhang, a UVa chemistry doctoral candidate, working with Dr. Cassandra Fraser, a UVa chemistry professor, synthesized the new material by combining a corn-based biopolymer with a dye that is both fluorescent and phosphorescent. The phosphorescence appears as a long-lived afterglow that is only evident under low oxygen or oxygen-free conditions.
Mr. Zhang devised a method to adjust the relative intensities of short-lived blue fluorescence and long-lived yellow phosphorescence, ultimately creating a calibrated colorful glow that allows visualization of even minute levels of oxygen. The biomaterial displays its oxygen-sensitive phosphorescence at room or body temperature, making it ideal for use in tissues.
"We were amazed at how easy the material was to synthesize and fabricate as films and nanoparticles, and how useful it is for measuring low oxygen concentrations,” Dr. Fraser said.
"It is based on a bio-friendly material,” added Dr. Zhang. "It is safe for the body and the environment, and so we realized it could have applications not just for medical research and developing improved disease treatments, but also for new sustainable technologies.”
Cancer researchers promptly realized that the new material could be particularly useful for real-time and extended-time spatial mapping of oxygen levels in tumors. This is important because a lack of sufficient oxygen in tumors, called hypoxia, is a major source of resistance to radiation and chemotherapy treatment, and promotes a greater degree of malignancy. "We have found that these nanoparticles were directly applicable to our existing tumor models,” said Greg Palmer, assistant professor of radiation oncology at Duke University Medical Center. "This technology will enable us to better characterize the influence of tumor hypoxia on tumor growth and treatment response.”
Researchers and clinicians have long looked for effective ways to locate and map low-oxygen areas in the body to understand better normal and disease processes. At present, there are no simple, easy, or inexpensive methods, preclinical or clinical, for generating oxygen maps of tumors and surrounding tissues with good spatial and temporal resolution.
"The method developed here holds great promise for being able to perform measurements of tumor hypoxia cost-effectively,” said study coauthor Dr. Mark Dewhirst, a professor of radiation oncology, pathology, and biomedical engineering at Duke. "This kind of tool could greatly increase our knowledge about methods to eliminate tumor hypoxia, which could lead to more effective treatments.”
"Tumors that have insufficient oxygen tend to be more likely to spread from the primary site to other parts of the body,” added Dr. Michael Weber, director of UVa's Cancer Center. "Despite the overall importance of tumor hypoxia, it is very difficult to measure directly and most methods that are available are very expensive.”
The new material currently is being used in preclinical studies to gain insight into cancer biology and treatment response, which could be useful for drug development and testing. "This technology enables entirely new insights to be obtained, allowing imaging of tumor hypoxia on the scale of tumor cells and small blood vessels,” Dr. Palmer said.
Eventually the material could be used as an injectable nanosensor, potentially providing continual data on oxygen levels, biologic processes, and therapy responsiveness. Hypoxia also is linked to cardiovascular disease, stroke, and diabetes, so the material developed by Mr. Zhang and Dr. Fraser could have applications in several areas of medicine.
Applications for the light-emitting biomaterial beyond medicine include molecular probes for cell biology, imaging agents for visualizing fluid and aerodynamics, and oxygen sensors for food and drug packaging, tamper resistant seals, and environmental monitoring, such as measuring oxygen levels in bodies of water.
Related Links:
University of Virginia
Duke University Medical Center
Latest MRI News
- New Material Boosts MRI Image Quality
- AI Model Reads and Diagnoses Brain MRI in Seconds
- MRI Scan Breakthrough to Help Avoid Risky Invasive Tests for Heart Patients
- MRI Scans Reveal Signature Patterns of Brain Activity to Predict Recovery from TBI
- Novel Imaging Approach to Improve Treatment for Spinal Cord Injuries
- AI-Assisted Model Enhances MRI Heart Scans
- AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
- New MRI Technique Reveals Hidden Heart Issues
- Shorter MRI Exam Effectively Detects Cancer in Dense Breasts
- MRI to Replace Painful Spinal Tap for Faster MS Diagnosis
- MRI Scans Can Identify Cardiovascular Disease Ten Years in Advance
- Simple Brain Scan Diagnoses Parkinson's Disease Years Before It Becomes Untreatable
- Cutting-Edge MRI Technology to Revolutionize Diagnosis of Common Heart Problem
- New MRI Technique Reveals True Heart Age to Prevent Attacks and Strokes
- AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
- AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Channels
Radiography
view channel
Routine Mammograms Could Predict Future Cardiovascular Disease in Women
Mammograms are widely used to screen for breast cancer, but they may also contain overlooked clues about cardiovascular health. Calcium deposits in the arteries of the breast signal stiffening blood vessels,... Read more
AI Detects Early Signs of Aging from Chest X-Rays
Chronological age does not always reflect how fast the body is truly aging, and current biological age tests often rely on DNA-based markers that may miss early organ-level decline. Detecting subtle, age-related... Read moreUltrasound
view channel
AI Model Accurately Detects Placenta Accreta in Pregnancy Before Delivery
Placenta accreta spectrum (PAS) is a life-threatening pregnancy complication in which the placenta abnormally attaches to the uterine wall. The condition is a leading cause of maternal mortality and morbidity... Read more
Portable Ultrasound Sensor to Enable Earlier Breast Cancer Detection
Breast cancer screening relies heavily on annual mammograms, but aggressive tumors can develop between scans, accounting for up to 30 percent of cases. These interval cancers are often diagnosed later,... Read more
Portable Imaging Scanner to Diagnose Lymphatic Disease in Real Time
Lymphatic disorders affect hundreds of millions of people worldwide and are linked to conditions ranging from limb swelling and organ dysfunction to birth defects and cancer-related complications.... Read more
Imaging Technique Generates Simultaneous 3D Color Images of Soft-Tissue Structure and Vasculature
Medical imaging tools often force clinicians to choose between speed, structural detail, and functional insight. Ultrasound is fast and affordable but typically limited to two-dimensional anatomy, while... Read moreNuclear Medicine
view channel
Radiopharmaceutical Molecule Marker to Improve Choice of Bladder Cancer Therapies
Targeted cancer therapies only work when tumor cells express the specific molecular structures they are designed to attack. In urothelial carcinoma, a common form of bladder cancer, the cell surface protein... Read more
Cancer “Flashlight” Shows Who Can Benefit from Targeted Treatments
Targeted cancer therapies can be highly effective, but only when a patient’s tumor expresses the specific protein the treatment is designed to attack. Determining this usually requires biopsies or advanced... Read moreGeneral/Advanced Imaging
view channel
AI Tool Offers Prognosis for Patients with Head and Neck Cancer
Oropharyngeal cancer is a form of head and neck cancer that can spread through lymph nodes, significantly affecting survival and treatment decisions. Current therapies often involve combinations of surgery,... Read more
New 3D Imaging System Addresses MRI, CT and Ultrasound Limitations
Medical imaging is central to diagnosing and managing injuries, cancer, infections, and chronic diseases, yet existing tools each come with trade-offs. Ultrasound, X-ray, CT, and MRI can be costly, time-consuming,... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
Nuclear Medicine Set for Continued Growth Driven by Demand for Precision Diagnostics
Clinical imaging services face rising demand for precise molecular diagnostics and targeted radiopharmaceutical therapy as cancer and chronic disease rates climb. A new market analysis projects rapid expansion... Read more







