We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Quantitative MRI Helps to Repair Damaged Knees

By MedImaging International staff writers
Posted on 31 Jul 2009
Print article
Image: Colored magnetic resonance imaging (MRI) scan of the knee joint showing meniscus degeneration (Photo courtesy of Simon Fraser / SPL).
Image: Colored magnetic resonance imaging (MRI) scan of the knee joint showing meniscus degeneration (Photo courtesy of Simon Fraser / SPL).
Investigators have shown that a biodegradable scaffold or plug can be used to treat patients with damaged knee cartilage. The study is unique in that it utilized serial magnetic resonance imaging (MRI) scanning and newer quantitative T2 mapping to examine how the plug incorporated itself into the knee.

The research findings were presented during the annual meeting of the American Orthopedic Society for Sports Medicine, June 9-12, 2009, in Keystone, CO, USA. "The data have been encouraging to support further evaluation of this synthetic scaffold as a cartilage repair technique,” said Asheesh Bedi, M.D., a fellow in sports medicine and shoulder surgery at the Hospital for Special Surgery (New York, NY, USA), who was involved with the study. Dr. Bedi performed analysis of MRI scans of patients primarily treated by Riley Williams, M.D., director of the Institute for Cartilage Repair at Hospital for Special Surgery. "The Trufit plug has been designed to have mechanical properties that are similar to cartilage and bone,” Dr. Bedi said.

Damage to so-called articular cartilage can occur in various ways, ranging from direct trauma in a motor vehicle accident to a noncontact, pivoting event on the soccer field. "Articular cartilage lacks the intrinsic properties of healing--you are essentially born with the articular cartilage that you have,” Dr. Bedi said. Left untreated, these injuries can increase loads placed on the remaining intact cartilage and increase the risk of progression to degenerative arthritis. One approach to treat patients with symptomatic chondral lesions is an OATS (osteoarticular transfer system) procedure, in which cartilage is transferred from one portion of the knee to treat another. Because this is a "robbing Peter to pay Paul” situation, researchers at Hospital for Special Surgery set out to evaluate whether they could use a biodegradable plug, the Trufit CB plug, to fill the donor site. The goal was to monitor how the plug incorporated itself into the knee and to assess the quality of the repair cartilage.

The Trufit plug has two layers. The top layer has properties similar to cartilage and the lower layer has properties similar to bone. The bilayered structure has mechanical properties that approximately match the adjacent cartilage and bone. Surgeons inserted the plug in the knees of 26 patients with donor lesions from OATS procedures and followed up with imaging studies (with MRI and T2-mapping) at various intervals for a period of 39 months.

"Quantitative MRI, when combined with morphologic assessment, allows us to understand the natural history of these repair techniques and define those patients who are most likely to benefit from the surgery,” said Hollis Potter, M.D., chief of the division of magnetic resonance imaging, director of research in the department of radiology and Imaging at Hospital for Special Surgery and lead author of the study. "We gain knowledge about the biology of integration with the host tissue, as well as the repair tissue biochemistry, all by a noninvasive imaging technique.”

"What we found was that the plug demonstrated a predictable process of maturation on imaging studies that paralleled the biology of their incorporation,” Dr. Bedi said. "With increasing postoperative duration, the repair tissue demonstrated encouraging properties with T2-values that resembled native articular cartilage.”

Dr. Williams, Dr. Bedi, and other surgeons at Hospital for Special Surgery are involved in ongoing studies to investigate the efficacy of the TruFit plug in treating primary cartilage defects as well. "What is unique about this study is that we have serial MRI with T2 mapping at various time points after surgery, which allows us to really examine the natural history of plug incorporation,” Dr. Bedi said.

Dr. Williams believes that there is a role for scaffold-based cartilage repair strategies in the treatment of symptomatic cartilage lesions. "It is our hope that we can successfully treat these cartilage problems over the long term, thus restoring normal knee function and slowing the progression of knee arthritis,” Dr. Williams said.

Related Links:
Hospital for Special Surgery

LED-Based X-Ray Viewer
Dixion X-View
Ultrasound Imaging System
P12 Elite
Radiation Therapy Treatment Software Application
Elekta ONE
New
Portable X-ray Unit
AJEX140H

Print article

Channels

Ultrasound

view channel
Image: Breast ultrasound provides an alternative screening modality to mammography in low-resource settings (Photo courtesy of 123RF)

Automated Breast Ultrasound Provides Alternative to Mammography in Low-Resource Settings

China has faced significant challenges in implementing a population-based mammographic screening program, primarily due to a shortage of breast radiologists and issues with screening quality.... Read more

Nuclear Medicine

view channel
Image: PSMA-PET/CT images of an 85-year-old patient with hormone-sensitive prostate cancer (Photo courtesy of Dr. Adrien Holzgreve)

Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients

Prostate-specific membrane antigen–portron emission tomography (PSMA-PET) imaging has become an essential tool in transforming the way prostate cancer is staged. Using small amounts of radioactive “tracers,”... Read more

General/Advanced Imaging

view channel
Image: Automated methods enable the analysis of PET/CT scans (left) to accurately predict tumor location and size (right) (Photo courtesy of Nature Machine Intelligence, 2024. DOI: 10.1038/s42256-024-00912-9)

Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans

Imaging techniques are essential for cancer diagnosis, as accurately determining the location, size, and type of tumors is critical for selecting the appropriate treatment. The key imaging methods include... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more