MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

AI System Combines CT Imaging with Clinical and Genetic Data for Early Lung Cancer Detection

By MedImaging International staff writers
Posted on 20 Feb 2024
Print article
Image: A new study suggests CT imaging with automated AI system can predict EGFR genotype (Photo courtesy of 123RF)
Image: A new study suggests CT imaging with automated AI system can predict EGFR genotype (Photo courtesy of 123RF)

Lung carcinoma prognosis has evolved significantly with the discovery of molecular targets and their corresponding treatments. Specifically, mutations in the Epidermal Growth Factor Receptor (EGFR) gene, found in lung carcinoma, serve as key targets for specialized therapies. However, in countries with limited resources like India, advanced testing methods such as next-generation sequencing remain inaccessible for widespread use. Challenges also include obtaining sufficient tissue from lung core biopsies and dealing with the inherent intratumoral heterogeneity that complicates the identification of suitable tumor tissues. Now, researchers have demonstrated that an AI-based system can automatically detect and analyze lung nodule features from CT images, predicting the likelihood of EGFR mutations. This innovation aids oncologists and patients in resource-limited settings by providing near-optimal care and guiding appropriate treatment decisions.

Previous studies leveraging AI with CT imaging have shown promise in categorizing and analyzing lung nodules without incurring additional costs. However, most of these methods have focused solely on nodule detection in CT images. Moreover, while AI has been used to extract comprehensive lung information for predicting EGFR genotype and evaluating responses to targeted lung cancer therapy, such efforts have predominantly been centered on White and Chinese populations. With a primary focus on the Indian population, researchers led by the Rajiv Gandhi Cancer Institute and Research Centre (New Delhi, India) set out to develop an AI-based strategy that could not only detect but also characterize lung nodules, indicating the EGFR mutational status in lung carcinoma patients. This would help triage patients requiring extensive molecular profiling of the EGFR-driver gene.

The team created a fully automated AI-based Predictive System (AIPS) using machine learning (ML) and deep learning (DL) algorithms. This system can detect lung nodule features from CT images and assess the probability of an EGFR mutation, thus eliminating the need for time-consuming image annotation by radiologists and complex feature engineering. In addition to incorporating EGFR gene sequencing and CT imaging data from 2277 lung carcinoma patients across three cohorts in India and a White population cohort from TCIA, the researchers used the LIDC-IDRI cohort to train the AIPS-Nodule (AIPS-N) model. This model automatically detects and characterizes lung nodules. The AIPS-N model's combination with clinical factors in the AIPS-Mutation (AIPS-M) model was evaluated for its effectiveness in predicting the EGFR genotype, achieving area under the curve (AUC) values ranging from 0.587 to 0.910. The AIPS-N successfully detected nodules with an average AP50 of 70.19% and predicted scores for five lung nodule properties. This research suggests that CT imaging combined with an automated lung-nodule analysis AI system can non-invasively and cost-effectively predict EGFR genotype, identifying patients with EGFR mutations.

Related Links:
Rajiv Gandhi Cancer Institute and Research Centre

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Ultrasound Software
UltraExtend NX
Silver Member
Mobile X-Ray Barrier
Lead Acrylic Mobile X-Ray Barriers
New
Ultrasound System
P20 Elite

Print article

Channels

Ultrasound

view channel
Image: CAM figures of testing images (Photo courtesy of SPJ; DOI:10.34133/research.0319)

Diagnostic System Automatically Analyzes TTE Images to Identify Congenital Heart Disease

Congenital heart disease (CHD) is one of the most prevalent congenital anomalies worldwide, presenting substantial health and financial challenges for affected patients. Early detection and treatment of... Read more

Nuclear Medicine

view channel
Image: Researchers have identified a new imaging biomarker for tumor responses to ICB therapy (Photo courtesy of 123RF)

New PET Biomarker Predicts Success of Immune Checkpoint Blockade Therapy

Immunotherapies, such as immune checkpoint blockade (ICB), have shown promising clinical results in treating melanoma, non-small cell lung cancer, and other tumor types. However, the effectiveness of these... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more