MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

AI Can Predict Need for CT in Pediatric Patients After Mild Traumatic Brain Injury

By MedImaging International staff writers
Posted on 06 Apr 2022
Print article
Image: Deep neural networks can predict the need for CT in pediatric mild traumatic brain injury (Photo courtesy of Unsplash)
Image: Deep neural networks can predict the need for CT in pediatric mild traumatic brain injury (Photo courtesy of Unsplash)

Only 10% of CT scans unveil positive findings in mild traumatic brain injury, raising concerns of its overuse in this population. A number of clinical rules have been developed to address this issue, but they still suffer limitations in their specificity. Machine learning models have been applied in limited studies to mimic clinical rules; however, further improvement in terms of balanced sensitivity and specificity is still needed. In a new study, researchers have found that deep neural networks can be uesd to predict the need for CT in pediatric mild traumatic brain injury.

For their study, researchers at The University of Queensland (Brisbane, Australia) applied a deep artificial neural networks (DANN) model and an instance hardness threshold algorithm to reproduce the Pediatric emergency Care Applied Research Network (PECARN) clinical rule in a pediatric population collected as a part of the PECARN study between 2004 and 2006. The DANN model was applied using 14,983 patients younger than 18 years with Glasgow Coma Scale scores ≥ 14 who had head CT reports. The clinical features of the PECARN rules, PECARN-A (group A, age < 2 years) and PECARN-B (group B, age ≤ 2 years), were used to directly evaluate the model. The average accuracy, sensitivity, precision, and specificity were calculated by comparing the model’s prediction outcome to that reported by the PECARN investigators. The instance hardness threshold and DANN model were applied to predict the need for CT in pediatric patients using fivefold cross-validation.

Based on the findings, the researchers concluded that a DANN model achieved comparable sensitivity and outstanding specificity for replicating the PECARN clinical rule and predicting the need for CT in pediatric patients after mild traumatic brain injury compared with the original statistically derived clinical rule.

Related Links:
The University of Queensland 

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
CT Phantom
CIRS Model 610 AAPM CT Performance Phantom
Ultrasound Doppler System
Doppler BT-200
New
1.5T MRI System
uMR 670

Print article

Channels

Ultrasound

view channel
Image: CAM figures of testing images (Photo courtesy of SPJ; DOI:10.34133/research.0319)

Diagnostic System Automatically Analyzes TTE Images to Identify Congenital Heart Disease

Congenital heart disease (CHD) is one of the most prevalent congenital anomalies worldwide, presenting substantial health and financial challenges for affected patients. Early detection and treatment of... Read more

Nuclear Medicine

view channel
Image: Researchers have identified a new imaging biomarker for tumor responses to ICB therapy (Photo courtesy of 123RF)

New PET Biomarker Predicts Success of Immune Checkpoint Blockade Therapy

Immunotherapies, such as immune checkpoint blockade (ICB), have shown promising clinical results in treating melanoma, non-small cell lung cancer, and other tumor types. However, the effectiveness of these... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more