We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

AI Predicts COVID Prognosis at Near-Expert Level Based Off CT Scans

By MedImaging International staff writers
Posted on 05 Apr 2022
Print article
Image: Chest CT deep learning algorithm quantifies COVID-19 lung disease (Photo courtesy of Pexels)
Image: Chest CT deep learning algorithm quantifies COVID-19 lung disease (Photo courtesy of Pexels)

A new study to evaluate the ability of a chest CT deep learning algorithm for quantification of COVID-19 lung disease found that it was highly predictive of inpatient outcomes and performed at a near expert level.

Investigators at the Medical University of South Carolina (Charleston, SC, USA) evaluated the ability of a deep convolutional neural network (dCNN) to predict inpatient outcomes associated with COVID-19 pneumonia. For the study, a previously trained dCNN was tested on an external validation cohort of 241 patients who presented to the emergency department and received a chest CT scan, 93 with COVID-19 and 168 without. Airspace opacity scoring systems were defined by the extent of airspace opacity in each lobe, totaled across the entire lungs. Expert and dCNN scores were concurrently evaluated for interobserver agreement, while both dCNN identified airspace opacity scoring and raw opacity values were used in the prediction of COVID-19 diagnosis and inpatient outcomes.

The study revealed that interobserver agreement for airspace opacity scoring was 0.892 (95% CI 0.834-0.930). The probability of each outcome behaved as a logistic function of the opacity scoring (25% ICU admission at score of 13/25, 25% intubation at 17/25, and 25% mortality at 20/25). The study also found that the length of hospitalization, ICU stay, and intubation were associated with larger airspace opacity score (p = 0.032, 0.039, 0.036, respectively). Based on these findings, the researchers concluded that the tested dCNN was highly predictive of inpatient outcomes, can perform at a near expert level, and provide added value for clinicians in terms of prognostication and disease severity.

“The use of artificial intelligence deep learning models to prognosticate from CT images has been identified from the beginning of the pandemic as a potential way to expedite the triage process, improve prognostication, and guideline utilization of resources,” explained corresponding author U. Joseph Schoepf, MD, from the Division of Cardiovascular Imaging at the Medical University of South Carolina in Charleston. “Utilizing AI severity scoring may be helpful in meeting the challenge of practical, reproducible triage of COVID-19 patients by identifying patients at high risk for morbidity and mortality.”

Related Links:
Medical University of South Carolina

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Wireless Handheld Ultrasound System
TE Air
Silver Member
Mobile X-Ray Barrier
Lead Acrylic Mobile X-Ray Barriers
New
Remote Controlled Digital Radiography and Fluoroscopy System
Eco Track-DRF - MARS 50/MARS50+/MARS 65/MARS 80

Print article

Channels

Ultrasound

view channel
Image: The powerful machine learning algorithm can “interpret” echocardiogram images and assess key findings (Photo courtesy of 123RF)

Largest Model Trained On Echocardiography Images Assesses Heart Structure and Function

Foundation models represent an exciting frontier in generative artificial intelligence (AI), yet many lack the specialized medical data needed to make them applicable in healthcare settings.... Read more

Nuclear Medicine

view channel
Image: The multi-spectral optoacoustic tomography (MSOT) machine generates images of biological tissues (Photo courtesy of University of Missouri)

New Imaging Technique Monitors Inflammation Disorders without Radiation Exposure

Imaging inflammation using traditional radiological techniques presents significant challenges, including radiation exposure, poor image quality, high costs, and invasive procedures. Now, new contrast... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more