We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Nanowire Single-Photon Sensor Detects Cerebral Blood Flow

By MedImaging International staff writers
Posted on 30 Aug 2021
Print article
Image: Novel nanowire sensors detect cerebral blood flow non-invasively (Photo courtesy of Getty Images)
Image: Novel nanowire sensors detect cerebral blood flow non-invasively (Photo courtesy of Getty Images)
Superconducting nanowire single-photon detectors (SNSPDs) could enable precise measurement of cerebral blood flow, according to a new study.

Adapted for diffuse correlation spectroscopy (DCS) imaging use by researchers at Massachusetts General Hospital (MGH; Boston, USA) and the Massachusetts Institute of Technology (MIT; Cambridge, MA, USA), the SNSPDs sensors consist of a thin film of superconducting material with excellent single-photon sensitivity and detection efficiency. While commonly used in optical quantum information, telecommunications, and space communications, SNSPDs were seldom used in biomedicine, till now.

To test the efficacy of the system, the researchers conducted cerebral blood flow measurements on 11 participants using a SNSPD-DCS system and a conventional single-photon avalanche photodiode (SPAD)-DCS system, both provided by Quantum Opus (Novi, MI,USA) . The SNSPD-DCS system operated at a wavelength of 1064 nm with two SNSPD detectors, whereas the quadruple SPAD-DCS system operated at 850 nm. The results showed that the SNSPDs outperformed SPADs in multiple parameters, such as time resolution, photon efficiency, and range of wavelength sensitivity.

The SNSPD-based DCS system showed significant improvement in signal-to-noise ratio (SNR) over SPAD-based DCS, as they received seven to eight times more photons than SPAD detectors, and at a double the efficiency. The 16 times increase in SNR allowed signal acquisition at 20 Hz at the same source–detector (SD) separation, allowing clear detection of arterial pulses. In addition, SNSPD-DCS was more effective in measuring cerebral blood flow during breath-holding and hyperventilation, and were in agreement with those obtained from PET and MRI studies. The study was published on August 19, 2021, in Neurophotonics.

“The SNSPD-DCS system facilitates higher photon collection, larger SD separations, and higher acquisition rates, leading to better accuracy,” concluded lead author Nisan Ozana, PhD, of MGH, and colleagues. “Given these advantages, this novel system may allow for a non-invasive and more precise measurement of cerebral blood flow, an important marker of cerebrovascular function, for adult clinical applications.”

DCS involves the illumination of tissues with near-infrared (nIR) lasers. The light is scattered by the movement of red blood cells (RBCs), and the diffraction pattern formed is analyzed to determine blood flow.

Related Links:
Massachusetts General Hospital
Massachusetts Institute of Technology
Quantum Opus


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Enterprise Imaging & Reporting Solution
Syngo Carbon
New
Color Doppler Ultrasound System
KC20
New
X-Ray QA Meter
Piranha CT

Print article

Channels

Ultrasound

view channel
Image: The powerful machine learning algorithm can “interpret” echocardiogram images and assess key findings (Photo courtesy of 123RF)

Largest Model Trained On Echocardiography Images Assesses Heart Structure and Function

Foundation models represent an exciting frontier in generative artificial intelligence (AI), yet many lack the specialized medical data needed to make them applicable in healthcare settings.... Read more

Nuclear Medicine

view channel
Image: The multi-spectral optoacoustic tomography (MSOT) machine generates images of biological tissues (Photo courtesy of University of Missouri)

New Imaging Technique Monitors Inflammation Disorders without Radiation Exposure

Imaging inflammation using traditional radiological techniques presents significant challenges, including radiation exposure, poor image quality, high costs, and invasive procedures. Now, new contrast... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more