We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Intraoperative Holographics Support Cardiac Procedures

By MedImaging International staff writers
Posted on 08 Oct 2019
Print article
Image: VR glasses and an electronic scribe help manipulate a holographic heart (Photo courtesy of EchoPixel).
Image: VR glasses and an electronic scribe help manipulate a holographic heart (Photo courtesy of EchoPixel).
A novel intraoperative software suite provides naked-eye, touchless, and interactive three-dimensional (3D) anatomical imaging to enhance structural heart procedures.

The EchoPixel (Santa Clara, CA, USA) True3D anatomical imaging tools are designed to provide clinicians with a holographic experience by using special virtual reality (VR) glasses that help them visualize and interact with patient-specific organs and tissue, just as they would with physical objects in the real world. This allows for enhanced pre-operative planning, improved patient selection, increased patient engagement, and the completion of increasingly complex structural heart and congenital heart disease procedures in both adults and pediatric patients in shorter timeframes.

The interactive VR software leverages computerized tomography (CT), magnetic resonance imaging (MRI), C-Arm fluoroscopy images, and echocardiography to create life-size holographic versions of organs, blood vessels, and other structures. This allows physicians to interact with a digital twin of the patient specific anatomy to identify optimal treatment target, approach, and catheter position, capture accurate measurements, distances, and angles, and virtually try in and fit implants and cardiac devices. The enhanced visualization of anatomical structures and spatial relationships also facilitate completion of procedures with reproducible, reliable outcomes.

“Building on the success of our existing technology in pediatric congenital heart procedures, EchoPixel is committed to enabling digital surgery, providing and continuously improving transformative technology designed to help clinicians improve and personalize delivery of minimally invasive therapies,” said Sergio Aguirre, CEO of EchoPixel. “Going forward, our vision for the OR of the future involves expanding our mixed reality True3D software platform to integrate AI and robotics to enable the completion of more precise and personalized procedures.”

“EchoPixel's technology lets you effortlessly interact with 3D images to better understand complex cardiac anatomy and the anatomic variability that is commonly seen in structural heart disease patients,” said Saurabh Sanon, MD, of Florida Atlantic University (Boca Raton, USA). “We are currently working on a research study comparing procedure times with and without the technology, and the initial results are promising in terms of reducing procedure times and device waste.”

In order to successfully identify an area of interest from a 3D medical data set, as those produced by CT, MRI and other devices, doctors are required to mentally integrate a series of 2D images and cognitively extract the relevant relationships that define the tissue or organ of interest, as well as its neighboring anatomy. In complex cases, they must visually map multiple views of the same data to find appropriate correspondences of one view with another view to produce a match, and determine if what they see is the tissue they want to evaluate.

Related Links:
EchoPixel
Florida Atlantic University

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Compact C-Arm
Arcovis DRF-C S21
New
Ultrasound System
P20 Elite
PACS Workstation
CHILI Web Viewer

Print article

Channels

Ultrasound

view channel
Image: The powerful machine learning algorithm can “interpret” echocardiogram images and assess key findings (Photo courtesy of 123RF)

Largest Model Trained On Echocardiography Images Assesses Heart Structure and Function

Foundation models represent an exciting frontier in generative artificial intelligence (AI), yet many lack the specialized medical data needed to make them applicable in healthcare settings.... Read more

Nuclear Medicine

view channel
Image: The multi-spectral optoacoustic tomography (MSOT) machine generates images of biological tissues (Photo courtesy of University of Missouri)

New Imaging Technique Monitors Inflammation Disorders without Radiation Exposure

Imaging inflammation using traditional radiological techniques presents significant challenges, including radiation exposure, poor image quality, high costs, and invasive procedures. Now, new contrast... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more