We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Radiation Beam Imaging System Observes RT in Action

By MedImaging International staff writers
Posted on 10 Aug 2018
Print article
Image: A novel imaging system visualizes RT in real time (Photo courtesy of DoseOptics).
Image: A novel imaging system visualizes RT in real time (Photo courtesy of DoseOptics).
A novel imaging system provides real-time visualization of radiotherapy (RT) beam shape at the point of incidence and exit.

The DoseOptics (Lebanon, NH, USA) C Dose RESEARCH camera uses unique time-gating video technology to capture both photon and electron beam delivery and ensure that each pulse of the linear accelerator contributes to the image, with time-integrating software allowing a cumulative image that can be overlaid in real time on the object being irradiated. Information on RT cone position, gantry movements, and the multi-leaf collimator (MLC) jaw are recorded simultaneously. The camera and software operate remotely, providing an independent check and measurement tool for both beam shape and delivery.

The C Dose RESEARCH camera is based on detection of Cherenkov radiation, an electromagnetic (EM) radiation emitted when a charged particle (such as an electron) passes through a dielectric (phased) medium at a speed that is greater than the phase velocity of light in the same medium. This gives off a visible glow. One such example of Cherenkov radiation is the characteristic blue glow emitted by an underwater nuclear reactor. Cherenkov radiation is named after Soviet scientist Pavel Cherenkov, who won the 1958 Nobel Prize in physics.

“We are extremely excited to be able to offer a Cherenkov imaging system to the field of radiation oncology where we believe it can change the paradigm of radiation delivery verification, and provide intuitive visualization of the treatment for everyone in the department,” said Brian Pogue, MD, PhD, president of DoseOptics. “As new delivery techniques improve and become more and more complex, verification remains a challenge. With C-Dose, medical physicists charged with ensuring delivery accuracy can now literally see what they are doing.”

Current external beam radiation therapy (EBRT) is a “blind” procedure, with patients aligned and imaged via computerized tomography (CT). Treatment plans are generated at the instrument before treatment starts. While EBRT is a highly precise treatment with little room for error, routine verification of targeted RT delivery is not typically done. Major errors are estimated at about 0.2%, and minor errors are likely to occur much more frequently. The consequences can range from skin burns to tissue damage to death.

Related Links:
DoseOptics

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
CT Phantom
CIRS Model 610 AAPM CT Performance Phantom
Color Doppler Ultrasound System
DRE Crystal 4PX
Ultrasound Doppler System
Doppler BT-200

Print article

Channels

Ultrasound

view channel
Image: The powerful machine learning algorithm can “interpret” echocardiogram images and assess key findings (Photo courtesy of 123RF)

Largest Model Trained On Echocardiography Images Assesses Heart Structure and Function

Foundation models represent an exciting frontier in generative artificial intelligence (AI), yet many lack the specialized medical data needed to make them applicable in healthcare settings.... Read more

Nuclear Medicine

view channel
Image: The multi-spectral optoacoustic tomography (MSOT) machine generates images of biological tissues (Photo courtesy of University of Missouri)

New Imaging Technique Monitors Inflammation Disorders without Radiation Exposure

Imaging inflammation using traditional radiological techniques presents significant challenges, including radiation exposure, poor image quality, high costs, and invasive procedures. Now, new contrast... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more