We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Ultrasound Can Image Immune Cells Enhanced With Microbubbles to Diagnose Early Stage Cancer

By MedImaging International staff writers
Posted on 02 Jun 2023

Macrophages, a type of white blood cell, protect the human body by surrounding and consuming foreign particles such as bacteria, viruses, and dead cells. Notably, these immune cells tend to gather within solid tumors, suggesting that monitoring their movement could yield innovative methods for early cancer and metastasis detection. Several imaging techniques including optical imaging, MRI, and PET scans have been employed to observe macrophages. However, each of these methods has its own shortcomings.

Optical imaging offers limited penetration depth, making it effective only for immune cells near the skin's surface. While MRI can provide detailed information about the macrophages and tumor surroundings, it has difficulty in detecting a small cell count. PET scans, despite their sensitivity, have a low resolution and require ionizing radiation. Now, a recent research breakthrough has demonstrated that attaching microbubbles to macrophages can generate detailed and sensitive tracking images to aid disease diagnosis.


Image: Attaching microbubbles to macrophages can create high-resolution and sensitive tracking images useful for disease diagnosis (Photo courtesy of Georgia Institute of Technology)
Image: Attaching microbubbles to macrophages can create high-resolution and sensitive tracking images useful for disease diagnosis (Photo courtesy of Georgia Institute of Technology)

A research team at Georgia Institute of Technology (Atlanta, GA, USA) pioneered this approach by attaching microbubbles to macrophages, which allowed these cells to send back an echo when hit with ultrasound. This technique facilitated the high-resolution and sensitive visualization of macrophages in a living organism. In vivo macrophage visualization could also serve as a potent tool in understanding immune responses and monitoring the effectiveness of therapeutic treatments.

“Ultrasound could potentially overcome these limitations, as it is nonionizing, noninvasive, and has great depth of penetration,” said Ashley Alva of the Georgia Institute of Technology. “In the future, we envision harvesting macrophages from patients, labeling them with microbubbles, and reinserting them to improve diagnosis using ultrasound tracking methods and algorithms we are currently developing. If needed, the harvested macrophages could also be engineered to become more sensitive to certain disease characteristics before being reinjected into patients.”

Related Links:
Georgia Institute of Technology


New
Gold Member
X-Ray QA Meter
T3 AD Pro
Fixed X-Ray System (RAD)
Allengers 325 - 525
Wall Fixtures
MRI SERIES
New
Doppler String Phantom
CIRS Model 043A

Latest Ultrasound News

Wearable Ultrasound Patch Enables Continuous Blood Pressure Monitoring

AI Image-Recognition Program Reads Echocardiograms Faster, Cuts Results Wait Time

Ultrasound Device Non-Invasively Improves Blood Circulation in Lower Limbs