We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

High-Resolution Scans Combined with Analysis to Help Detect Concussions

By Andrew Deutsch
Posted on 14 Dec 2016
Researchers in the Canada have found that there is a better chance of detecting concussion in the brain when patients undergo high-resolution Magnetoncephalography (MEG) scans, than if they undergo standard MRI or CT imaging.

The study was published in the December 2016 issue of the journal PLOS Computational Biology, and showed that MEG, which maps interactions between different brain regions, can be used to detect neural changes better than standard imaging. Mild Traumatic Brain Injuries (MTBI), a frequent injury in American football players, are also not easily detected by conventional imaging scans.

Image: A Magnetoencephalography (MEG) imaging is also used for patients with suspected concussion injuries of the brain (Photo courtesy of University of California, San Francisco).
Image: A Magnetoencephalography (MEG) imaging is also used for patients with suspected concussion injuries of the brain (Photo courtesy of University of California, San Francisco).

The researchers from the Simon Fraser University (SFU; Burnaby, BC, Canada) took MEG imaging scans of 41 men between 20 and 44 years old, half of who had a diagnosis of concussion in the three months prior to the scan, and found observable changes in communication between different areas of the patient’s brains. MEG functional neuroimaging is an imaging technique used for mapping brain activity that currently uses extremely sensitive magnetometers called Superconducting Quantum Interference Devices (SQUIDs).

One of the researchers, Vasily Vakorin, from the Behavioral and Cognitive Neuroscience Institute at the SFU, said, "Changes in communication between brain areas, as detected by MEG, allowed us to detect concussion from individual scans, in situations where MRI or CT failed."

Related Links:
Simon Fraser University


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Thyroid Shield
Standard Thyroid Shield
New
Enterprise Imaging & Reporting Solution
Syngo Carbon
Ultrasound Needle Guide
Ultra-Pro II

Latest Radiography News

Novel Breast Imaging System Proves As Effective As Mammography

AI Assistance Improves Breast-Cancer Screening by Reducing False Positives

AI Could Boost Clinical Adoption of Chest DDR