We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Molecular Imaging Offers Insight into Chemotherapy-Related Cognitive Impairment

By MedImaging International staff writers
Posted on 30 Mar 2023

Chemo-brain, also known as chemotherapy-related cognitive impairment (CRCI), is a clinical condition that causes memory and concentration impairment, information processing and executive functioning difficulties, as well as mood and anxiety disorders. Although CRCI has been extensively studied from a clinical standpoint, little is known about the biological mechanisms that lead to chemo-brain. Now, new research findings have highlighted the role of nuclear medicine brain imaging in assessing the biological changes that cause CRCI. With this knowledge, patients can gain a better understanding of the changes in their cognitive status during and after treatment.

In order to gain insight into the current state of nuclear medicine and molecular imaging for chemo-brain, researchers at University Tor Vergata (Rome, Italy) conducted an extensive literature review. Adhering to the PRISMA guidelines for literature searches, the researchers identified 22 relevant studies focused on two topics: 1) the effects of commonly used chemotherapy drugs on cognitive function, and 2) the results of SPECT and PET examinations related to CRCI. The findings of the review confirmed that chemotherapy drugs can have an impact on cognitive function, resulting in impaired executive function, anxiety, and sleep issues. The review also highlighted the usefulness of various SPECT and PET imaging techniques, which can visualize glucose consumption, blood flow, and receptor expression, all of which could potentially play a role in CRCI. Thus, nuclear medicine offers a variety of tools to thoroughly evaluate the physiopathological processes underlying CRCI.


Image: Molecular imaging offers insight into chemo-brain (Photo courtesy of Pexels)
Image: Molecular imaging offers insight into chemo-brain (Photo courtesy of Pexels)

“Nuclear medicine techniques can be used to investigate different physiopathological phenomena related to CRCI, such as cortical metabolism, dopamine transporter integrity, and neuroinflammation, with specific imaging probes,” said Agostino Chiaravalloti, MD, PhD, professor of nuclear medicine and nuclear medicine physician in the Department of Biomedicine and Prevention at University Tor Vergata. “However, nuclear medicine tests are not commonly considered in the work-up of patients with CRCI-related manifestations.”

“The findings presented could lead to a better understanding of the potential role of molecular imaging in the assessment of subtle changes in the brain after treatment and, possibly, in the monitoring of brain functions in patients treated with chemotherapy,” added Chiaravalloti.

Related Links:
University Tor Vergata


New
Gold Member
X-Ray QA Meter
T3 AD Pro
Ultra-Flat DR Detector
meX+1717SCC
New
Diagnostic Ultrasound System
MS1700C
New
Transducer Covers
Surgi Intraoperative Covers

Latest Nuclear Medicine News

New Scans Light Up Aggressive Tumors for Better Treatment

AI Stroke Brain Scan Readings Twice as Accurate as Current Method

AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer