We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

MRI-Based Algorithm Accurately Predicts Spinal Pathologies

By MedImaging International staff writers
Posted on 09 Oct 2023

Various types of spinal pathologies exist, ranging from trauma and degenerative diseases to infections, neoplasms, inflammatory conditions, and tumors. Therefore, clinical evaluation often relies on laboratory tests and imaging studies to guide diagnosis and treatment decisions. Although biopsy is the definitive method for diagnosis, it's invasive and expensive. Now, a new study has revealed that a deep-learning algorithm using MRI scans can effectively distinguish between different types of spinal pathologies. The study showed that the algorithm's accuracy was moderate for the validation group but high for the test group.

Researchers from the Tel Aviv Medical Center (Tel Aviv, Israel) built the deep-learning algorithm on the Fast.ai framework on top of the PyTorch environment and uses pre-surgery MRI data and post-surgery pathological findings for its evaluations. The data used for training and validation were organized in a five-fold cross-validation format. The study examined MRI data from 231 patients who had different spinal pathologies: carcinoma, infection, meningioma, and schwannoma. The research indicated that the algorithm achieved an average accuracy of 0.78 in the validation set and 0.93 in the test set.


Image: The MRI-based algorithm can differentiate between different spinal pathologies (Photo courtesy of 123RF)
Image: The MRI-based algorithm can differentiate between different spinal pathologies (Photo courtesy of 123RF)

While the researchers admit that the algorithm isn't as precise as traditional pathology reports, they see it as a promising tool for the timely diagnosis of spinal conditions. It could potentially reduce the need for riskier, more invasive procedures like biopsies. Future research, they suggest, should focus on integrating larger and more diverse patient datasets to assess the algorithm's broader applicability. They also highlighted the need for additional studies to explore the practicality of using deep-learning methods for identifying spinal pathologies via MRI.

“Although based on a relatively small, segregated cohort, this study represents the power of deep learning tools in prediction spinal pathologies and lays the foundations for developing deep learning-based algorithms for this purpose,” wrote the authors.

Related Links:
Tel Aviv Medical Center


3T MRI Scanner
MAGNETOM Cima.X
Ultrasound Imaging System
P12 Elite
Ultrasound Scanner
TBP-5533
Silver Member
Radiographic Positioning Equipment
2-Step Multiview Positioning Platform

Latest MRI News

First-Of-Its-Kind 10' x 48' Mobile MRI Scanner Transforms User and Patient Experience

New Model Makes MRI More Accurate and Reliable

New Scan Method Shows Effects of Treatment on Lung Function in Real Time