We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Machine Learning Model Uses MRI Data to Identify Candidates for Liver Transplant

By MedImaging International staff writers
Posted on 22 Aug 2022

Post-treatment recurrence is an unpredictable complication after liver transplant for hepatocellular carcinoma (HCC) that is associated with poor survival. Biomarkers are needed to estimate recurrence risk before organ allocation. A new study has found that machine learning (ML) models applied to presently underutilized imaging features could help construct more reliable criteria for organ allocation and liver transplant eligibility.

In the proof-of-concept study, researchers at Yale University School of Medicine (New Haven, CT, USA) evaluated the use of ML to predict recurrence from pretreatment laboratory, clinical, and MRI data in patients with early-stage HCC initially eligible for liver transplant. The study included 120 patients (88 men, 32 women; median age, 60 years) diagnosed with early-stage HCC between June 2005 and March 2018, who were initially eligible for liver transplant and underwent treatment by transplant, resection, or thermal ablation. Patients underwent pretreatment MRI and post-treatment imaging surveillance, and imaging features were extracted from post-contrast phases of pretreatment MRI examinations using a pre-trained convolutional neural network (VGG-16). Pretreatment clinical characteristics (including laboratory data) and extracted imaging features were integrated to develop three ML models - clinical, imaging, combined - for recurrence prediction within 1-6 years post-treatment.


Image: Machine learning models can predict hepatocellular carcinoma treatment response (Photo courtesy of Pexels)
Image: Machine learning models can predict hepatocellular carcinoma treatment response (Photo courtesy of Pexels)

Ultimately, all three models predicted post-treatment recurrence for early-stage HCC from pretreatment clinical (AUC 0.60–0.78, across all six time frames), MRI (AUC 0.71–0.85), and both data combined (AUC 0.62–0.86). Using imaging data as the sole model input yielded higher predictive performance than clinical data alone; however, combining both data types did not significantly improve performance over use of imaging data alone.

“The findings suggest that machine learning-based models can predict recurrence before therapy allocation in patients with early-stage HCC initially eligible for liver transplant,” wrote corresponding author Julius Chapiro from the department of radiology and biomedical imaging at Yale University School of Medicine.

Related Links:

Yale University School of Medicine


X-ray Diagnostic System
FDX Visionary-A
Ultrasonic Pocket Doppler
SD1
Ultrasound Table
Women’s Ultrasound EA Table
New
Adjustable Mobile Barrier
M-458

Latest MRI News

AI-Assisted Model Enhances MRI Heart Scans
22 Aug 2022  |   MRI

AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
22 Aug 2022  |   MRI

New MRI Technique Reveals Hidden Heart Issues
22 Aug 2022  |   MRI