We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Micro-CT Imaging Detects Changes in Bone Tissue Far More Quickly Than Bone Densitometry Scans

By MedImaging International staff writers
Posted on 04 Nov 2022

Millions of people are affected by osteoporosis, resulting in billions of dollars in economic burden and incalculable suffering. Now, researchers have developed a new approach to imaging that detects changes in bone tissue far more quickly than bone densitometry scans, the method currently used in health care. While the study was done using a rabbit model, the results could lead to improved drug treatment in humans with osteoporosis.

Using the BMIT beamline of the Canadian Light Source at the University of Saskatchewan (Saskatoon, Canada), the research team was able to see the incredibly tiny pores inside cortical bone, the dense outer surface of bone that accounts for the majority of bone mass. These pores change over time, showing how bone tissue is continuously removed and replaced. The researchers stimulated this bone turnover using parathyroid hormone, then tracked the changes in the pores of the cortical bone in as little as 14 days.


Image: New bone imaging technique could lead to improved osteoporosis treatment (Photo courtesy of Pexels)
Image: New bone imaging technique could lead to improved osteoporosis treatment (Photo courtesy of Pexels)

Study lead Dr. Kim Harrison said this research would not have been possible using conventional X-ray techniques. “This uses refractive qualities between soft and hard tissues which highlights these pores within the bone and makes it easier to image and track the changes,” she said.

“In humans, the pores we were looking at are about the width of a few hairs – a quarter of a millimeter – and in rabbits they’re about half that size,” said Dr. David Cooper, whose latest breakthrough builds on a decade’s worth of work in this area. “Using micro-computed tomography (micro-CT) we were, for the first time, able to see the shapes of these pores and actually track them over time.”

“This really is the establishment of a fundamentally new way of looking at bone turnover,” added Cooper. “Nobody has ever been able to do this before in terms of tracking the pores.”

Related Links:
University of Saskatchewan 


New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Digital X-Ray Detector Panel
Acuity G4
New
Digital Radiographic System
OMNERA 300M
New
Mini C-arm Imaging System
Fluoroscan InSight FD

Latest General/Advanced Imaging News

AI-Enabled Plaque Assessments Help Cardiologists Identify High-Risk CAD Patients

Automated Multi-Patient CT Injection System Reduces Patient Set-Up Time and Streamlines Workflows

Low-Dose CT Screening for Lung Cancer Can Benefit Heavy Smokers