Compact and Portable MRI Scanner to Expand Existing Imaging Capabilities and Accessibility

By MedImaging International staff writers
Posted on 01 Jun 2023

Magnetic Resonance Imaging (MRI) technology which provides detailed images of the human brain is instrumental in understanding brain functions and diagnosing medical conditions. MRI has become indispensable in neuroscience and clinical medicine. However, a significant portion of the global population lacks access to MRI, mainly due to its high cost, the necessity for specialized facilities and trained personnel, and its massive size and weight, which limits its transportability to remote or resource-restricted areas. Consequently, MRI is predominantly accessible to the middle and upper classes in affluent nations. Now, a compact, portable MRI scanner under development will allow for imaging of brain function and structure almost anywhere, for almost anyone.

The University of Minnesota (Minneapolis, MN, USA) and Victoria University of Wellington (Wellington, New Zealand) have received National Institutes of Health (NIH) grants amounting to more than USD 12 million to develop a radically new MRI scanner that is compact and transportable. Over the past eight years, researchers at U of M Medical School have developed MRI technology which has enabled them to build a prototype brain MRI scanner that could potentially enhance MRI capabilities and accessibility. The Victoria University of Wellington team's design of a new MRI head-only magnet will facilitate brain studies without the constraints of a large MRI magnet bore.


Image: An international, multi-institutional project aims to develop a radically new MRI scanner that is compact and transportable (Photo courtesy of U of M Medical School)

This novel MRI scanner's small size and light weight will make it easily transportable for imaging brain function and structure, making it accessible to almost anyone, anywhere. The researchers plan to use MRI techniques to generate different types of images required for various research objectives. Subsequently, they aim to partner with communities traditionally lacking in medical resources, such as Native American tribal communities, to conduct a field trial of this technology.

“Future portable MRI scanners like ours may empower communities in remote, resource-limited settings to address health inequities, perform research leading to improved understanding of brain development and degeneration in diverse populations, and improve access to quality clinical care,” said study principal investigator Michael Garwood, PhD, a professor in the U of M Medical School.

Related Links:
University of Minnesota
Victoria University of Wellington


Latest MRI News