We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Refining CREST MRI to Track Creatine in Heart Patients

By MedImaging International staff writers
Posted on 28 Jan 2014
A new magnetic resonance imaging (MRI) approach to map creatine at higher resolutions in the heart may help clinicians and scientists find abnormalities and disorders earlier than traditional diagnostic methods.

Investigators from the Perelman School of Medicine at the University of Pennsylvania (Penn Medicine; Philadelphia, PA, USA) reported in a new study published online January 13, 2014, in the journal Nature Medicine that their preclinical findings show an advantage over less sensitive tests and point to a safer and more cost-effective strategy than those with radioactive or contrasting agents.

Image: Creatine CEST maps of healthy myocardium in a large animal (left). Eight week-old infarcted tissue, with noticeably less creatine (right). Arrow on right indicates infarcted region of heart tissue (Photo courtesy of Ravinder Reddy, PhD, Nature Medicine).
Image: Creatine CEST maps of healthy myocardium in a large animal (left). Eight week-old infarcted tissue, with noticeably less creatine (right). Arrow on right indicates infarcted region of heart tissue (Photo courtesy of Ravinder Reddy, PhD, Nature Medicine).

Creatine is a naturally occurring metabolite that helps supply energy to all cells through creatine kinase reaction, including those involved in contraction of the heart. Even in the very early stages, when heart tissue becomes injured from a loss of blood supply, creatine levels decrease. Researchers utilized this process in a large animal model with a technique called chemical exchange saturation transfer (CEST), which measures specific molecules in the body, to track the creatine on a regional basis.

The team, led by Ravinder Reddy, PhD, professor of radiology and director of the Center for Magnetic Resonance and Optical Imaging at Penn Medicine, discovered that imaging creatine through CEST MRI provides higher resolution compared to standard magnetic resonance spectroscopy (MRS), a typically used technique for measuring creatine. Its inferior resolution, however, makes it difficult to determine precisely which areas of the heart have been compromised.

Related Links:

Perelman School of Medicine at the University of Pennsylvania



Portable X-ray Unit
AJEX140H
Post-Processing Imaging System
DynaCAD Prostate
Digital Color Doppler Ultrasound System
MS22Plus
Medical Radiographic X-Ray Machine
TR30N HF

Latest MRI News

New Material Boosts MRI Image Quality
28 Jan 2014  |   MRI

AI Model Reads and Diagnoses Brain MRI in Seconds
28 Jan 2014  |   MRI

MRI Scan Breakthrough to Help Avoid Risky Invasive Tests for Heart Patients
28 Jan 2014  |   MRI