We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

New AI System Performs As Well As Radiologists in Detecting Prostate Cancer

By MedImaging International staff writers
Posted on 24 Apr 2019
Researchers from the University of California {(UCLA), Los Angeles, CA, USA} have developed a new artificial intelligence (AI) system to help radiologists improve their ability to diagnose prostate cancer. The system, called FocalNet, helps identify and predict the aggressiveness of the disease evaluating magnetic resonance imaging (MRI) scans with almost the same level of accuracy as experienced radiologists.

Typically, radiologists use MRI to detect and assess the aggressiveness of malignant prostate tumors. However, this requires practicing on thousands of scans to learn how to accurately determine whether a tumor is cancerous or benign and to accurately estimate the grade of the cancer. Additionally, many hospitals lack the resources to implement the highly specialized training required for detecting cancer from MRIs.

FocalNet is an artificial neural network that can help radiologists improve their ability to diagnose prostate cancer by using an algorithm comprising over one million trainable variables. The UCLA researchers trained the system by making it analyze MRI scans of 417 men with prostate cancer. The scans were fed into the system so that it could learn to assess and classify tumors in a consistent way and have it compare the results to the actual pathology specimen. The researchers tested FocalNet and found it to be 80.5% accurate in reading MRIs, as compared to radiologists having at least 10 years of experience who were 83.9% accurate. This suggests that an AI system could save time and potentially provide diagnostic guidance to less-experienced radiologists.

Related Links:
University of California Los Angeles



New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Ultrasound Imaging System
P12 Elite
New
Digital X-Ray Detector Panel
Acuity G4
Portable X-ray Unit
AJEX130HN

Latest Industry News News

Bracco Diagnostics and ColoWatch Partner to Expand Availability CRC Screening Tests Using Virtual Colonoscopy

Mindray Partners with TeleRay to Streamline Ultrasound Delivery

Philips and Medtronic Partner on Stroke Care