We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

AI Could Help Identify Early Skin Cancer

By MedImaging International staff writers
Posted on 05 Sep 2017
Newly developed technology uses artificial intelligence (AI) to help detect melanoma skin cancer earlier than current methods and to help reduce the number of unnecessary biopsies. The AI-based method employs machine-learning software to analyze images of skin lesions and to provide doctors with objective data on telltale biomarkers of melanoma.

"This could be a very powerful tool for skin cancer clinical decision support," said Alexander Wong, professor at University of Waterloo (Waterloo, ON, Canada), "The more interpretable information there is, the better the decisions are." Prof. Wong developed the technology in collaboration with Daniel Cho, former PhD student at Waterloo, David Clausi, professor at Waterloo, and Farzad Khalvati, adjunct professor at Waterloo and scientist at Sunnybrook.

Image: New AI technology may help detect melanoma skin cancer earlier than current methods and to help reduce the number of unnecessary biopsies (Photo courtesy of Deposit Photos).
Image: New AI technology may help detect melanoma skin cancer earlier than current methods and to help reduce the number of unnecessary biopsies (Photo courtesy of Deposit Photos).

Currently, dermatologists largely rely on subjective visual examinations of skin lesions (e.g. moles) to decide if patients should undergo biopsies to diagnose the disease. The new system deciphers levels of biomarker substances in lesions, adding consistent, quantitative information to assessments currently based on visual appearance alone. In particular, changes in the concentration and distribution of eumelanin (gives color to skin) and hemoglobin are strong indicators of melanoma.

"There can be a huge lag-time before doctors even figure out what is going on with the patient," said Prof. Wong, "Our goal is to shorten that process." The AI system was trained using tens of thousands of skin images and their corresponding eumelanin and hemoglobin levels. It gives doctors objective information on lesion characteristics to help them identify or rule out melanoma before deciding if to take more invasive action. The technology could be available to doctors as early as 2018.

The research was recently presented at the 14th International Conference on Image Analysis and Recognition (ICIAR 2017, July 5-7, 2017, Montreal, Canada).

Related Links:
University of Waterloo


New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
3T MRI Scanner
MAGNETOM Cima.X
New
Multi-Use Ultrasound Table
Clinton
New
Gold Member
X-Ray QA Meter
T3 RG Pro

Latest Industry News News

Bracco Diagnostics and ColoWatch Partner to Expand Availability CRC Screening Tests Using Virtual Colonoscopy

Mindray Partners with TeleRay to Streamline Ultrasound Delivery

Philips and Medtronic Partner on Stroke Care