We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Novel Imaging Technique Visualizes Potential Cancer Treatments in Action

By MedImaging International staff writers
Posted on 20 Apr 2015
A new and innovative imaging technique for observing cancer treatments in brain tumor cells has been developed by researchers at the Virginia Tech Carilion Research Institute (Roanoke, VA, USA).

The study was published in the March 3, 2015, online edition of the journal NANO Letters. The researchers used nanotechnology to target glioblastoma tumor stem cells which tend to survive existing cancer treatments and grow into new tumors.

Image: A new imaging techniques to see how brain cancer cells (the darker gray on the bottom of the large image above) take in gold nanorod treatment (the small gray specks). The four magnified images on the right show how the cell takes up the treatment across a span of 30 seconds (Photo courtesy of VirginiaTech).
Image: A new imaging techniques to see how brain cancer cells (the darker gray on the bottom of the large image above) take in gold nanorod treatment (the small gray specks). The four magnified images on the right show how the cell takes up the treatment across a span of 30 seconds (Photo courtesy of VirginiaTech).

The researchers isolated glioblastoma tumor stem cells in cultures, treated them with gold nanorod cancer therapy, and observed the results at the cellular level using in situ transmission electron microscopy.

"Zhi Sheng, assistant professor at Virginia Tech Carilion Research institute, said, "We've never been able to directly observe the actions of potential cancer treatments this way before. We can look at single-cell delivery of cancer treatments, and see how the individual cells respond. If we can learn how to kill these cells, we should be able to improve our chances of developing effective treatments by being able to directly observe the effects of the possible therapeutics."

Related Links:

The Virginia Tech Carilion Research Institute



New
Gold Member
X-Ray QA Meter
T3 AD Pro
Silver Member
Radiographic Positioning Equipment
2-Step Multiview Positioning Platform
New
Mini C-arm Imaging System
Fluoroscan InSight FD
Portable X-ray Unit
AJEX130HN

Latest Imaging IT News

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology

AI-Based Mammography Triage Software Helps Dramatically Improve Interpretation Process