We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Optimized Gold Nanoparticles to Improve Drug Delivery, Cancer Therapy and Imaging

By MedImaging International staff writers
Posted on 04 Jun 2025

Health care professionals utilize gold nanoparticles for a variety of medical purposes, including diagnostic imaging and cancer treatment. Gold is an ideal material for these applications due to its biocompatibility, stability, and visibility in imaging tests. However, despite the wide use of gold nanoparticles in medicine, there is limited understanding of how their size influences their performance. L-cysteine, an amino acid crucial in many biological functions, can prevent gold nanoparticles from aggregating, which is essential for ensuring the success of medical treatments. By forming a strong bond with gold, L-cysteine facilitates the attachment of nanoparticles to specific targets, such as cancer cells. A new study aimed at exploring the relationship between the size of gold nanoparticles and their interaction with L-cysteine found that smaller nanoparticles tend to exhibit the best performance.

Researchers at Western University (London, ON, Canada) collaborated with the Canadian Light Source at the University of Saskatchewan (Saskatoon, SK, Canada) to investigate how the size of gold nanoparticles affects their interaction with L-cysteine. Using synchrotron light along with other advanced techniques, the team found that smaller gold nanoparticles (5 nanometers) formed stronger bonds with L-cysteine compared to larger nanoparticles (10, 15, and 20 nanometers). For context, a human hair is approximately 100,000 nanometers wide.


Image: Optimizing gold nanoparticles can improve medical imaging, drug delivery, and cancer therapy (Photo courtesy of Shutterstock)
Image: Optimizing gold nanoparticles can improve medical imaging, drug delivery, and cancer therapy (Photo courtesy of Shutterstock)

The findings, published in the journal Particle & Particle Systems Characterization, also revealed that the smallest gold nanoparticles were less likely to clump together when L-cysteine was present. Clumping can impair the effectiveness, stability, and safety of nanoparticles. The researchers believe that these insights could help optimize the size of gold nanoparticles, thereby enhancing drug delivery, improving cancer treatment, and refining imaging techniques.

“It is important to know if the (gold) particle stays the same size, because each size has specific properties and you design the particle in this way, and then don't want it to change in the human body,” said Yolanda Hedberg, a professor of chemistry at Western University. “When we understand exactly how the size is affecting the reaction with the environment, we can design the particle size in a way that we make the nanomedicine as effective as possible.”


Ultrasonic Pocket Doppler
SD1
Radiology Software
DxWorks
X-Ray Illuminator
X-Ray Viewbox Illuminators
New
Half Apron
Demi

Latest General/Advanced Imaging News

First-Of-Its-Kind Wearable Device Offers Revolutionary Alternative to CT Scans

AI-Based CT Scan Analysis Predicts Early-Stage Kidney Damage Due to Cancer Treatments

CT-Based Deep Learning-Driven Tool to Enhance Liver Cancer Diagnosis