We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Hybrid Scanner Using Five Molecular Imaging Techniques Under Development

By MedImaging International staff writers
Posted on 30 Jun 2015
Scientists are developing a new molecular, preclinical hybrid imaging system to help find new drugs and to advance imaging research.

The scanner was presented at the 2015 Annual Meeting of the Society of Nuclear Medicine and Molecular Imaging (SNMMI; Reston, Virginia, USA), and consists of a window for tissue observation, and an imaging chamber. The scanner is intended for research into the microenvironment of tumors and other tissues, and co-registration of multiple lines of imaging data.

The scanner combines Positron Emission Tomography (PET) for physiological information from radiotracers, conventional and hyperpolarized Magnetic Resonance Imaging (MRI) for soft-tissue contrast and tracking of minute biochemistry, and luminescence, fluorescence and optical imaging for investigations by microscope.

The researchers presented a study in which a tumor cell line was transplanted into a rat. The animal was then imaged with conventional MRI, hyperpolarized MRI, a positron detector, and a luminescence sensor, and tissues analyzed using a fluorescence microscope.

Zhen Liu, PhD candidate, lead author of the study, at the nuclear medicine department, Technical University Munich (Munich, Germany), said, “This technology allows us to obtain in-depth knowledge of molecular imaging techniques, how to optimize them, and how to leverage data with statistical analysis while advancing new radiotracers and contrast agents for the imaging and treatment of a range of diseases. Understanding the physiology behind multimodal imaging is very challenging due to discrepancies between macroscopic and microscopic images and between images of extracted or transplanted tissues versus images of a live subject. This establishment of high-resolution multimodal intra-vital imaging can bridge these discrepancies and offer a tool for the long-term observation of underlying physiology.”

Related Links:

SNMMI
Technical University Munich



Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Silver Member
Mobile X-Ray Barrier
Lead Acrylic Mobile X-Ray Barriers
New
Ultrasound Table
Powered Ultrasound Table-Flat Top
PACS Workstation
CHILI Web Viewer

Latest General/Advanced Imaging News

Artificial Intelligence Evaluates Cardiovascular Risk from CT Scans

New AI Method Captures Uncertainty in Medical Images

CT Coronary Angiography Reduces Need for Invasive Tests to Diagnose Coronary Artery Disease