MRI Helps Detect pH Changes in Tumor Tissue
By MedImaging International staff writers Posted on 31 May 2017 |

Image: Hyperpolarized ZA measurements compared to pH-values in a rat kidney (Photo courtesy of Franz Schilling / TUM).
A new study demonstrates how hyperpolarized 13C-labelled zymonic acid (ZA) can be used as a magnetic resonance imaging (MRI) pH imaging sensor.
Researchers at Munich Technical University developed the pH imaging sensor using ZA marked with carbon-13 in order to be visible in MRI images. In order to make pH values visible using ZA, the molecule is first hyperpolarized using microwaves at very low temperatures; a hot liquid is then used to quickly return the ZA to room temperature. The biosensor is then injected into the body, and the scan is performed immediately, as the hyperpolarization effect wears off in 60 seconds.
When inside the MRI, the magnetic field waves excite the nuclear spins of the ZA to oscillation. The reactions of the nuclei are then recorded, and the data is used to calculate frequency spectra, which in turn provide information about the chemical properties of the molecular surroundings of the nuclei. The pH value at any examined location in the tissue can be represented based on molecular changes in the ZA. The researchers have succeeded in showing that their method is sensitive enough to represent medically relevant pH value changes in the organism.
The researchers conducted studies in rat kidneys and subcutaneously inoculated tumors derived from a mammary adenocarcinoma cell line, generating in-vivo pH maps, and also successfully characterized ZA as a non-toxic compound predominantly present in the extracellular space. The researchers also suggest that in contrast to current optical methods, which are limited to superficial penetration into the body due to the low transparency of tissue, there are no limitations to the depth of penetration for MRI. The study was published on May 11, 2017, in Nature Communications.
“Areas surrounding tumors and inflammations are usually slightly more acidic than areas surrounding healthy tissue, a phenomenon possibly linked to the aggressiveness of tumors,” said senior author TUM physicist Franz Schilling, PhD. “pH values are also interesting when it comes to evaluating the efficacy of tumor treatments. Even before a successfully treated tumor starts to shrink, its metabolism and thus the pH value of the surrounding area could change. An appropriate pH imaging method would indicate at a much earlier stage whether or not the right approach has been selected.”
The hyperpolarized spin state exists at very low spin temperature that are not in a thermal equilibrium with the temperature of the tissue, which leads to high magnetization of the spin ensemble, resulting in very high nuclear magnetic resonance signal intensity. The hyperpolarized spin state eventually returns to the thermal equilibrium temperature by depolarization.
Researchers at Munich Technical University developed the pH imaging sensor using ZA marked with carbon-13 in order to be visible in MRI images. In order to make pH values visible using ZA, the molecule is first hyperpolarized using microwaves at very low temperatures; a hot liquid is then used to quickly return the ZA to room temperature. The biosensor is then injected into the body, and the scan is performed immediately, as the hyperpolarization effect wears off in 60 seconds.
When inside the MRI, the magnetic field waves excite the nuclear spins of the ZA to oscillation. The reactions of the nuclei are then recorded, and the data is used to calculate frequency spectra, which in turn provide information about the chemical properties of the molecular surroundings of the nuclei. The pH value at any examined location in the tissue can be represented based on molecular changes in the ZA. The researchers have succeeded in showing that their method is sensitive enough to represent medically relevant pH value changes in the organism.
The researchers conducted studies in rat kidneys and subcutaneously inoculated tumors derived from a mammary adenocarcinoma cell line, generating in-vivo pH maps, and also successfully characterized ZA as a non-toxic compound predominantly present in the extracellular space. The researchers also suggest that in contrast to current optical methods, which are limited to superficial penetration into the body due to the low transparency of tissue, there are no limitations to the depth of penetration for MRI. The study was published on May 11, 2017, in Nature Communications.
“Areas surrounding tumors and inflammations are usually slightly more acidic than areas surrounding healthy tissue, a phenomenon possibly linked to the aggressiveness of tumors,” said senior author TUM physicist Franz Schilling, PhD. “pH values are also interesting when it comes to evaluating the efficacy of tumor treatments. Even before a successfully treated tumor starts to shrink, its metabolism and thus the pH value of the surrounding area could change. An appropriate pH imaging method would indicate at a much earlier stage whether or not the right approach has been selected.”
The hyperpolarized spin state exists at very low spin temperature that are not in a thermal equilibrium with the temperature of the tissue, which leads to high magnetization of the spin ensemble, resulting in very high nuclear magnetic resonance signal intensity. The hyperpolarized spin state eventually returns to the thermal equilibrium temperature by depolarization.
Latest MRI News
- Cutting-Edge MRI Technology to Revolutionize Diagnosis of Common Heart Problem
- New MRI Technique Reveals True Heart Age to Prevent Attacks and Strokes
- AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
- AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
- Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
- AI-Powered MRI Technology Improves Parkinson’s Diagnoses
- Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
- First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
- New Model Improves Comparison of MRIs Taken at Different Institutions
- Groundbreaking New Scanner Sees 'Previously Undetectable' Cancer Spread
- First-Of-Its-Kind Tool Analyzes MRI Scans to Measure Brain Aging
- AI-Enhanced MRI Images Make Cancerous Breast Tissue Glow
- AI Model Automatically Segments MRI Images
- New Research Supports Routine Brain MRI Screening in Asymptomatic Late-Stage Breast Cancer Patients
- Revolutionary Portable Device Performs Rapid MRI-Based Stroke Imaging at Patient's Bedside
- AI Predicts After-Effects of Brain Tumor Surgery from MRI Scans
Channels
Radiography
view channel
AI Improves Early Detection of Interval Breast Cancers
Interval breast cancers, which occur between routine screenings, are easier to treat when detected earlier. Early detection can reduce the need for aggressive treatments and improve the chances of better outcomes.... Read more
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreNuclear Medicine
view channel
Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read moreGeneral/Advanced Imaging
view channel
AI-Based CT Scan Analysis Predicts Early-Stage Kidney Damage Due to Cancer Treatments
Radioligand therapy, a form of targeted nuclear medicine, has recently gained attention for its potential in treating specific types of tumors. However, one of the potential side effects of this therapy... Read more
CT-Based Deep Learning-Driven Tool to Enhance Liver Cancer Diagnosis
Medical imaging, such as computed tomography (CT) scans, plays a crucial role in oncology, offering essential data for cancer detection, treatment planning, and monitoring of response to therapies.... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more